The glutaminase inhibitor telaglenastat enhances the antitumor activity of signal transduction inhibitors everolimus and cabozantinib in models of renal cell carcinoma

Dysregulated metabolism is a hallmark of cancer that manifests through alterations in bioenergetic and biosynthetic pathways to enable tumor cell proliferation and survival. Tumor cells exhibit high rates of glycolysis, a phenomenon known as the Warburg effect, and an increase in glutamine consumpti...

Full description

Bibliographic Details
Main Authors: Ethan Emberley, Alison Pan, Jason Chen, Rosalyn Dang, Matt Gross, Tony Huang, Weiqun Li, Andrew MacKinnon, Devansh Singh, Natalija Sotirovska, Susanne M. Steggerda, Tracy Wang, Francesco Parlati
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2021-01-01
Series:PLoS ONE
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8565744/?tool=EBI
_version_ 1818567439291514880
author Ethan Emberley
Alison Pan
Jason Chen
Rosalyn Dang
Matt Gross
Tony Huang
Weiqun Li
Andrew MacKinnon
Devansh Singh
Natalija Sotirovska
Susanne M. Steggerda
Tracy Wang
Francesco Parlati
author_facet Ethan Emberley
Alison Pan
Jason Chen
Rosalyn Dang
Matt Gross
Tony Huang
Weiqun Li
Andrew MacKinnon
Devansh Singh
Natalija Sotirovska
Susanne M. Steggerda
Tracy Wang
Francesco Parlati
author_sort Ethan Emberley
collection DOAJ
description Dysregulated metabolism is a hallmark of cancer that manifests through alterations in bioenergetic and biosynthetic pathways to enable tumor cell proliferation and survival. Tumor cells exhibit high rates of glycolysis, a phenomenon known as the Warburg effect, and an increase in glutamine consumption to support the tricarboxylic acid (TCA) cycle. Renal cell carcinoma (RCC) tumors express high levels of glutaminase (GLS), the enzyme required for the first step in metabolic conversion of glutamine to glutamate and the entry of glutamine into the TCA cycle. We found that RCC cells are highly dependent on glutamine for proliferation, and this dependence strongly correlated with sensitivity to telaglenstat (CB-839), an investigational, first-in-class, selective, orally bioavailable GLS inhibitor. Metabolic profiling of RCC cell lines treated with telaglenastat revealed a decrease in glutamine consumption, which was concomitant with a decrease in the production of glutamate and other glutamine-derived metabolites, consistent with GLS inhibition. Treatment of RCC cells with signal transduction inhibitors everolimus (mTOR inhibitor) or cabozantinib (VEGFR/MET/AXL inhibitor) in combination with telaglenastat resulted in decreased consumption of both glucose and glutamine and synergistic anti-proliferative effects. Treatment of mice bearing Caki-1 RCC xenograft tumors with cabozantinib plus telaglenastat resulted in reduced tumor growth compared to either agent alone. Enhanced anti-tumor activity was also observed with the combination of everolimus plus telaglenastat. Collectively, our results demonstrate potent, synergistic, anti-tumor activity of telaglenastat plus signal transduction inhibitors cabozantinib or everolimus via a mechanism involving dual inhibition of glucose and glutamine consumption.
first_indexed 2024-12-14T06:23:25Z
format Article
id doaj.art-6c0de2182b2a4d79a5f11c452b1fd4d4
institution Directory Open Access Journal
issn 1932-6203
language English
last_indexed 2024-12-14T06:23:25Z
publishDate 2021-01-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS ONE
spelling doaj.art-6c0de2182b2a4d79a5f11c452b1fd4d42022-12-21T23:13:45ZengPublic Library of Science (PLoS)PLoS ONE1932-62032021-01-011611The glutaminase inhibitor telaglenastat enhances the antitumor activity of signal transduction inhibitors everolimus and cabozantinib in models of renal cell carcinomaEthan EmberleyAlison PanJason ChenRosalyn DangMatt GrossTony HuangWeiqun LiAndrew MacKinnonDevansh SinghNatalija SotirovskaSusanne M. SteggerdaTracy WangFrancesco ParlatiDysregulated metabolism is a hallmark of cancer that manifests through alterations in bioenergetic and biosynthetic pathways to enable tumor cell proliferation and survival. Tumor cells exhibit high rates of glycolysis, a phenomenon known as the Warburg effect, and an increase in glutamine consumption to support the tricarboxylic acid (TCA) cycle. Renal cell carcinoma (RCC) tumors express high levels of glutaminase (GLS), the enzyme required for the first step in metabolic conversion of glutamine to glutamate and the entry of glutamine into the TCA cycle. We found that RCC cells are highly dependent on glutamine for proliferation, and this dependence strongly correlated with sensitivity to telaglenstat (CB-839), an investigational, first-in-class, selective, orally bioavailable GLS inhibitor. Metabolic profiling of RCC cell lines treated with telaglenastat revealed a decrease in glutamine consumption, which was concomitant with a decrease in the production of glutamate and other glutamine-derived metabolites, consistent with GLS inhibition. Treatment of RCC cells with signal transduction inhibitors everolimus (mTOR inhibitor) or cabozantinib (VEGFR/MET/AXL inhibitor) in combination with telaglenastat resulted in decreased consumption of both glucose and glutamine and synergistic anti-proliferative effects. Treatment of mice bearing Caki-1 RCC xenograft tumors with cabozantinib plus telaglenastat resulted in reduced tumor growth compared to either agent alone. Enhanced anti-tumor activity was also observed with the combination of everolimus plus telaglenastat. Collectively, our results demonstrate potent, synergistic, anti-tumor activity of telaglenastat plus signal transduction inhibitors cabozantinib or everolimus via a mechanism involving dual inhibition of glucose and glutamine consumption.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8565744/?tool=EBI
spellingShingle Ethan Emberley
Alison Pan
Jason Chen
Rosalyn Dang
Matt Gross
Tony Huang
Weiqun Li
Andrew MacKinnon
Devansh Singh
Natalija Sotirovska
Susanne M. Steggerda
Tracy Wang
Francesco Parlati
The glutaminase inhibitor telaglenastat enhances the antitumor activity of signal transduction inhibitors everolimus and cabozantinib in models of renal cell carcinoma
PLoS ONE
title The glutaminase inhibitor telaglenastat enhances the antitumor activity of signal transduction inhibitors everolimus and cabozantinib in models of renal cell carcinoma
title_full The glutaminase inhibitor telaglenastat enhances the antitumor activity of signal transduction inhibitors everolimus and cabozantinib in models of renal cell carcinoma
title_fullStr The glutaminase inhibitor telaglenastat enhances the antitumor activity of signal transduction inhibitors everolimus and cabozantinib in models of renal cell carcinoma
title_full_unstemmed The glutaminase inhibitor telaglenastat enhances the antitumor activity of signal transduction inhibitors everolimus and cabozantinib in models of renal cell carcinoma
title_short The glutaminase inhibitor telaglenastat enhances the antitumor activity of signal transduction inhibitors everolimus and cabozantinib in models of renal cell carcinoma
title_sort glutaminase inhibitor telaglenastat enhances the antitumor activity of signal transduction inhibitors everolimus and cabozantinib in models of renal cell carcinoma
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8565744/?tool=EBI
work_keys_str_mv AT ethanemberley theglutaminaseinhibitortelaglenastatenhancestheantitumoractivityofsignaltransductioninhibitorseverolimusandcabozantinibinmodelsofrenalcellcarcinoma
AT alisonpan theglutaminaseinhibitortelaglenastatenhancestheantitumoractivityofsignaltransductioninhibitorseverolimusandcabozantinibinmodelsofrenalcellcarcinoma
AT jasonchen theglutaminaseinhibitortelaglenastatenhancestheantitumoractivityofsignaltransductioninhibitorseverolimusandcabozantinibinmodelsofrenalcellcarcinoma
AT rosalyndang theglutaminaseinhibitortelaglenastatenhancestheantitumoractivityofsignaltransductioninhibitorseverolimusandcabozantinibinmodelsofrenalcellcarcinoma
AT mattgross theglutaminaseinhibitortelaglenastatenhancestheantitumoractivityofsignaltransductioninhibitorseverolimusandcabozantinibinmodelsofrenalcellcarcinoma
AT tonyhuang theglutaminaseinhibitortelaglenastatenhancestheantitumoractivityofsignaltransductioninhibitorseverolimusandcabozantinibinmodelsofrenalcellcarcinoma
AT weiqunli theglutaminaseinhibitortelaglenastatenhancestheantitumoractivityofsignaltransductioninhibitorseverolimusandcabozantinibinmodelsofrenalcellcarcinoma
AT andrewmackinnon theglutaminaseinhibitortelaglenastatenhancestheantitumoractivityofsignaltransductioninhibitorseverolimusandcabozantinibinmodelsofrenalcellcarcinoma
AT devanshsingh theglutaminaseinhibitortelaglenastatenhancestheantitumoractivityofsignaltransductioninhibitorseverolimusandcabozantinibinmodelsofrenalcellcarcinoma
AT natalijasotirovska theglutaminaseinhibitortelaglenastatenhancestheantitumoractivityofsignaltransductioninhibitorseverolimusandcabozantinibinmodelsofrenalcellcarcinoma
AT susannemsteggerda theglutaminaseinhibitortelaglenastatenhancestheantitumoractivityofsignaltransductioninhibitorseverolimusandcabozantinibinmodelsofrenalcellcarcinoma
AT tracywang theglutaminaseinhibitortelaglenastatenhancestheantitumoractivityofsignaltransductioninhibitorseverolimusandcabozantinibinmodelsofrenalcellcarcinoma
AT francescoparlati theglutaminaseinhibitortelaglenastatenhancestheantitumoractivityofsignaltransductioninhibitorseverolimusandcabozantinibinmodelsofrenalcellcarcinoma
AT ethanemberley glutaminaseinhibitortelaglenastatenhancestheantitumoractivityofsignaltransductioninhibitorseverolimusandcabozantinibinmodelsofrenalcellcarcinoma
AT alisonpan glutaminaseinhibitortelaglenastatenhancestheantitumoractivityofsignaltransductioninhibitorseverolimusandcabozantinibinmodelsofrenalcellcarcinoma
AT jasonchen glutaminaseinhibitortelaglenastatenhancestheantitumoractivityofsignaltransductioninhibitorseverolimusandcabozantinibinmodelsofrenalcellcarcinoma
AT rosalyndang glutaminaseinhibitortelaglenastatenhancestheantitumoractivityofsignaltransductioninhibitorseverolimusandcabozantinibinmodelsofrenalcellcarcinoma
AT mattgross glutaminaseinhibitortelaglenastatenhancestheantitumoractivityofsignaltransductioninhibitorseverolimusandcabozantinibinmodelsofrenalcellcarcinoma
AT tonyhuang glutaminaseinhibitortelaglenastatenhancestheantitumoractivityofsignaltransductioninhibitorseverolimusandcabozantinibinmodelsofrenalcellcarcinoma
AT weiqunli glutaminaseinhibitortelaglenastatenhancestheantitumoractivityofsignaltransductioninhibitorseverolimusandcabozantinibinmodelsofrenalcellcarcinoma
AT andrewmackinnon glutaminaseinhibitortelaglenastatenhancestheantitumoractivityofsignaltransductioninhibitorseverolimusandcabozantinibinmodelsofrenalcellcarcinoma
AT devanshsingh glutaminaseinhibitortelaglenastatenhancestheantitumoractivityofsignaltransductioninhibitorseverolimusandcabozantinibinmodelsofrenalcellcarcinoma
AT natalijasotirovska glutaminaseinhibitortelaglenastatenhancestheantitumoractivityofsignaltransductioninhibitorseverolimusandcabozantinibinmodelsofrenalcellcarcinoma
AT susannemsteggerda glutaminaseinhibitortelaglenastatenhancestheantitumoractivityofsignaltransductioninhibitorseverolimusandcabozantinibinmodelsofrenalcellcarcinoma
AT tracywang glutaminaseinhibitortelaglenastatenhancestheantitumoractivityofsignaltransductioninhibitorseverolimusandcabozantinibinmodelsofrenalcellcarcinoma
AT francescoparlati glutaminaseinhibitortelaglenastatenhancestheantitumoractivityofsignaltransductioninhibitorseverolimusandcabozantinibinmodelsofrenalcellcarcinoma