Activity of fibroblast-like synoviocytes in rheumatoid arthritis was impaired by dickkopf-1 targeting siRNA
Abstract. Background. Fibroblast-like synoviocytes (FLSs), resident mesenchymal cells of synovial joints, play an important role in the pathogenesis of rheumatoid arthritis (RA). Dickkopf-1 (DKK-1) has been proposed to be a master regulator of bone remodeling in inflammatory arthritis. Here, potenti...
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wolters Kluwer
2020-03-01
|
Series: | Chinese Medical Journal |
Online Access: | http://journals.lww.com/10.1097/CM9.0000000000000697 |
Summary: | Abstract. Background. Fibroblast-like synoviocytes (FLSs), resident mesenchymal cells of synovial joints, play an important role in the pathogenesis of rheumatoid arthritis (RA). Dickkopf-1 (DKK-1) has been proposed to be a master regulator of bone remodeling in inflammatory arthritis. Here, potential impairation on the activity of FLSs derived from RA to small interfering RNAs (siRNAs) targeting DKK-1 was investigated.
Methods. siRNAs targeting DKK-1 were transfected into FLSs of patients with RA. Interleukin (IL)-1β, IL-6, IL-8, matrix metalloproteinase (MMP) 2, MMP3, MMP9, transforming growth factor (TGF)-β1, TGF-β2 and monocyte chemoattractant protein (MCP)-1 levels in the cell culture supernatant were detected by enzyme-linked immunosorbent assay (ELISA). Invasion assay and 3H incorporation assay were utilized to investigate the effects of siRNAs targeting DKK-1 on FLSs invasion and cell proliferation, respectively. Western blotting was performed to analyze the expression of nuclear factor (NF)-κB, interleukin-1 receptor-associated kinase (IRAK)1, extracellular regulated protein kinases (ERK)1, Jun N-terminal kinase (JNK) and β-catenin in FLSs.
Results. DKK-1 targeting siRNAs inhibited the expression of DKK-1 in FLSs (P < 0.01). siRNAs induced a significant reduction of the levels of IL-6, IL-8, MMP2, MMP3 and MMP9 in FLSs compared to the control group (P < 0.05). DKK-1 targeting siRNAs inhibited the proliferation and invasion of FLSs (P < 0.05). Important molecules of pro-inflammatory signaling in FLSs, including IRAK1 and ERK1, were decreased by the inhibition of DKK-1 in FLSs. In contrast, β-catenin, a pivotal downstream molecule of the Wnt signaling pathway was increased.
Conclusions. By inhibiting DKK-1, we were able to inhibit the proliferation, invasion and pro-inflammatory cytokine secretion of FLSs derived from RA, which was mediated by the ERK or the IRAK-1 signaling pathway. These data indicate the application of DKK-1 silencing could be a potential therapeutic approach to RA. |
---|---|
ISSN: | 0366-6999 2542-5641 |