Thermo-mechanical vibration analysis of annular and circular graphene sheet embedded in an elastic medium
In this study, the vibration behavior of annular and circular graphene sheet coupled with temperature change and under in-plane pre-stressed is studied. Influence of the surrounding elastic medium 011 the fundamental frequencies of the single-layered graphene sheets (SLGSs) is investigated. Both Win...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Marcílio Alves
|
Series: | Latin American Journal of Solids and Structures |
Subjects: | |
Online Access: | http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252014000400007&lng=en&tlng=en |
_version_ | 1811280599794581504 |
---|---|
author | M. Mohammadi A. Farajpour M. Goodarzi F. Dinari |
author_facet | M. Mohammadi A. Farajpour M. Goodarzi F. Dinari |
author_sort | M. Mohammadi |
collection | DOAJ |
description | In this study, the vibration behavior of annular and circular graphene sheet coupled with temperature change and under in-plane pre-stressed is studied. Influence of the surrounding elastic medium 011 the fundamental frequencies of the single-layered graphene sheets (SLGSs) is investigated. Both Winkler-type and Pasternak- type models are employed to simulate the interaction of the graphene sheets with a surrounding elastic medium. By using the nonlocal elasticity theory the governing equation is derived for SLGSs. The closed-form solution for frequency vibration of circular graphene sheets lias been obtained and nonlocal parameter, inplane pre-stressed, the parameters of elastic medium and temperature change appears into arguments of Bessel functions. The results are subsequently compared with valid result reported in the literature and the molecular dynamics (MD) results. The effects of the small scale, pre-stressed, mode number, temperature change, elastic medium and boundary conditions on natural frequencies are investigated. The non-dimensional frequency decreases at high temperature case with increasing the temperature change for all boundary conditions. The effect of temperature change 011 the frequency vibration becomes the opposite at high temperature case in compression with the low temperature case. The present research work thus reveals that the nonlocal parameter, boundary conditions and temperature change have significant effects on vibration response of the circular nanoplates. The present results can be used for the design of the next generation of nanodevices that make use of the thermal vibration properties of the graphene. |
first_indexed | 2024-04-13T01:17:44Z |
format | Article |
id | doaj.art-6c1145f217464c0a848936fb060a0a9f |
institution | Directory Open Access Journal |
issn | 1679-7825 |
language | English |
last_indexed | 2024-04-13T01:17:44Z |
publisher | Marcílio Alves |
record_format | Article |
series | Latin American Journal of Solids and Structures |
spelling | doaj.art-6c1145f217464c0a848936fb060a0a9f2022-12-22T03:08:51ZengMarcílio AlvesLatin American Journal of Solids and Structures1679-782511465968210.1590/S1679-78252014000400007S1679-78252014000400007Thermo-mechanical vibration analysis of annular and circular graphene sheet embedded in an elastic mediumM. Mohammadi0A. Farajpour1M. Goodarzi2F. Dinari3Islamic Azad UniversityIsfahan University of TechnologyIslamic Azad UniversityIslamic Azad UniversityIn this study, the vibration behavior of annular and circular graphene sheet coupled with temperature change and under in-plane pre-stressed is studied. Influence of the surrounding elastic medium 011 the fundamental frequencies of the single-layered graphene sheets (SLGSs) is investigated. Both Winkler-type and Pasternak- type models are employed to simulate the interaction of the graphene sheets with a surrounding elastic medium. By using the nonlocal elasticity theory the governing equation is derived for SLGSs. The closed-form solution for frequency vibration of circular graphene sheets lias been obtained and nonlocal parameter, inplane pre-stressed, the parameters of elastic medium and temperature change appears into arguments of Bessel functions. The results are subsequently compared with valid result reported in the literature and the molecular dynamics (MD) results. The effects of the small scale, pre-stressed, mode number, temperature change, elastic medium and boundary conditions on natural frequencies are investigated. The non-dimensional frequency decreases at high temperature case with increasing the temperature change for all boundary conditions. The effect of temperature change 011 the frequency vibration becomes the opposite at high temperature case in compression with the low temperature case. The present research work thus reveals that the nonlocal parameter, boundary conditions and temperature change have significant effects on vibration response of the circular nanoplates. The present results can be used for the design of the next generation of nanodevices that make use of the thermal vibration properties of the graphene.http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252014000400007&lng=en&tlng=enVibrationIn-plane pre-stressedCircular and annular graphene sheetTemperature change |
spellingShingle | M. Mohammadi A. Farajpour M. Goodarzi F. Dinari Thermo-mechanical vibration analysis of annular and circular graphene sheet embedded in an elastic medium Latin American Journal of Solids and Structures Vibration In-plane pre-stressed Circular and annular graphene sheet Temperature change |
title | Thermo-mechanical vibration analysis of annular and circular graphene sheet embedded in an elastic medium |
title_full | Thermo-mechanical vibration analysis of annular and circular graphene sheet embedded in an elastic medium |
title_fullStr | Thermo-mechanical vibration analysis of annular and circular graphene sheet embedded in an elastic medium |
title_full_unstemmed | Thermo-mechanical vibration analysis of annular and circular graphene sheet embedded in an elastic medium |
title_short | Thermo-mechanical vibration analysis of annular and circular graphene sheet embedded in an elastic medium |
title_sort | thermo mechanical vibration analysis of annular and circular graphene sheet embedded in an elastic medium |
topic | Vibration In-plane pre-stressed Circular and annular graphene sheet Temperature change |
url | http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252014000400007&lng=en&tlng=en |
work_keys_str_mv | AT mmohammadi thermomechanicalvibrationanalysisofannularandcirculargraphenesheetembeddedinanelasticmedium AT afarajpour thermomechanicalvibrationanalysisofannularandcirculargraphenesheetembeddedinanelasticmedium AT mgoodarzi thermomechanicalvibrationanalysisofannularandcirculargraphenesheetembeddedinanelasticmedium AT fdinari thermomechanicalvibrationanalysisofannularandcirculargraphenesheetembeddedinanelasticmedium |