Summary: | Among the viviparous marine teleosts of China, the black rockfish (<i>Sebastes schlegelii</i> Hilgendorf) is one of the most economically important. In addition to copulation and internal fertilization, it features lengthy sperm storage in the female ovary as well as a high rate of abortion. A network of gene regulation is necessary for these processes. To elucidate the mechanisms of copulation, fertilization, and gestation, it is essential to determine the genetic basis of viviparous teleost oogenesis and embryogenesis. In this study, we analyzed the transcriptome of the ovary during different developmental phases to investigate the dynamic changes that occur. We constructed 24 ovary transcriptomes. In order to investigate the regulation of embryogenesis, differentially expressed genes (DEGs) with specific expression patterns were subjected to gene ontology annotation, pathway analyses, and weighted gene co-expression network analysis (WGCNA). The up-regulated genes were significantly enriched in focal adhesion, regulation of the actin cytoskeleton, Wnt, and ECM-receptor interaction signaling pathways. As a result of our study, we provide omics evidence for copulation, fertilization, and gestation in viviparous marine teleosts. Decoding the <i>S. schlegelii</i> gene regulation network, as well as providing new insights into embryogenesis, is highly valuable to researchers in the marine teleost reproduction sciences.
|