q-Dominant and q-recessive matrix solutions for linear quantum systems

In this study, linear second-order matrix $q$-difference equations are shown to be formally self-adjoint equations with respect to a certain inner product and the associated self-adjoint boundary conditions. A generalized Wronskian is introduced and a Lagrange identity and Abel's formula are es...

Full description

Bibliographic Details
Main Authors: Douglas Anderson, L. M. Moats
Format: Article
Language:English
Published: University of Szeged 2007-05-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=270
Description
Summary:In this study, linear second-order matrix $q$-difference equations are shown to be formally self-adjoint equations with respect to a certain inner product and the associated self-adjoint boundary conditions. A generalized Wronskian is introduced and a Lagrange identity and Abel's formula are established. Two reduction-of-order theorems are given. The analysis and characterization of $q$-dominant and $q$-recessive solutions at infinity are presented, emphasizing the case when the quantum system is disconjugate.
ISSN:1417-3875