A diagnostic model for predicting type 2 nasal polyps using biomarkers in nasal secretion

BackgroundPredicting type 2 chronic rhinosinusitis with nasal polyps (CRSwNP) may help for selection of appropriate surgical procedures or pharmacotherapies in advance. However, an accurate non-invasive method for diagnosis of type 2 CRSwNP is presently unavailable.MethodsTo optimize the technique f...

Full description

Bibliographic Details
Main Authors: Zaichuan Wang, Qiqi Wang, Su Duan, Yuling Zhang, Limin Zhao, Shujian Zhang, Liusiqi Hao, Yan Li, Xiangdong Wang, Chenshuo Wang, Nan Zhang, Claus Bachert, Luo Zhang, Feng Lan
Format: Article
Language:English
Published: Frontiers Media S.A. 2022-12-01
Series:Frontiers in Immunology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fimmu.2022.1054201/full
_version_ 1811195463256244224
author Zaichuan Wang
Zaichuan Wang
Qiqi Wang
Su Duan
Su Duan
Yuling Zhang
Yuling Zhang
Limin Zhao
Limin Zhao
Shujian Zhang
Shujian Zhang
Liusiqi Hao
Liusiqi Hao
Yan Li
Xiangdong Wang
Xiangdong Wang
Chenshuo Wang
Chenshuo Wang
Nan Zhang
Claus Bachert
Luo Zhang
Luo Zhang
Luo Zhang
Feng Lan
author_facet Zaichuan Wang
Zaichuan Wang
Qiqi Wang
Su Duan
Su Duan
Yuling Zhang
Yuling Zhang
Limin Zhao
Limin Zhao
Shujian Zhang
Shujian Zhang
Liusiqi Hao
Liusiqi Hao
Yan Li
Xiangdong Wang
Xiangdong Wang
Chenshuo Wang
Chenshuo Wang
Nan Zhang
Claus Bachert
Luo Zhang
Luo Zhang
Luo Zhang
Feng Lan
author_sort Zaichuan Wang
collection DOAJ
description BackgroundPredicting type 2 chronic rhinosinusitis with nasal polyps (CRSwNP) may help for selection of appropriate surgical procedures or pharmacotherapies in advance. However, an accurate non-invasive method for diagnosis of type 2 CRSwNP is presently unavailable.MethodsTo optimize the technique for collecting nasal secretion (NasSec), 89 CRSwNP patients were tested using nasal packs made with four types of materials. Further, Th2low and Th2highCRSwNP defined by clustering analysis in another 142 CRSwNP patients using tissue biomarkers, in the meanwhile, inflammatory biomarkers were detected in NasSec of the same patients collected by the selected nasal pack. A diagnostic model was established by machine learning algorithms to predict Th2highCRSwNP using NasSecs biomarkers.ResultsConsidering the area under receiver operating characteristic curve (AUC) for IL-5 in NasSec, nasal pack in polyvinyl alcohol (PVA) was superior to other materials for NasSec collection. When Th2low and Th2highCRSwNP clusters were defined, logistic regression and decision tree model for prediction of Th2highCRSwNP demonstrated high AUCs values of 0.92 and 0.90 respectively using biomarkers of NasSecs. Consequently, the pre-pruned decision tree model; based on the levels of IL-5 in NasSec (≤ 15.04 pg/mL), blood eosinophil count (≤ 0.475*109/L) and absence of comorbid asthma; was chosen to define Th2lowCRSwNP from Th2highCRSwNP for routine clinical use.ConclusionsTaken together, a decision tree model based on a combination of NasSec biomarkers and clinical features can accurately define type 2 CRSwNP patients and therefore may be of benefit to patients in receiving appropriate therapies in daily clinical practice.
first_indexed 2024-04-12T00:43:45Z
format Article
id doaj.art-6c374fe5a8e5442389dbe7861c0065bb
institution Directory Open Access Journal
issn 1664-3224
language English
last_indexed 2024-04-12T00:43:45Z
publishDate 2022-12-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Immunology
spelling doaj.art-6c374fe5a8e5442389dbe7861c0065bb2022-12-22T03:54:56ZengFrontiers Media S.A.Frontiers in Immunology1664-32242022-12-011310.3389/fimmu.2022.10542011054201A diagnostic model for predicting type 2 nasal polyps using biomarkers in nasal secretionZaichuan Wang0Zaichuan Wang1Qiqi Wang2Su Duan3Su Duan4Yuling Zhang5Yuling Zhang6Limin Zhao7Limin Zhao8Shujian Zhang9Shujian Zhang10Liusiqi Hao11Liusiqi Hao12Yan Li13Xiangdong Wang14Xiangdong Wang15Chenshuo Wang16Chenshuo Wang17Nan Zhang18Claus Bachert19Luo Zhang20Luo Zhang21Luo Zhang22Feng Lan23Beijing Key Laboratory of Nasal Disease, Beijing Institute of Otolaryngology, Beijing, ChinaDepartment of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, ChinaBeijing Key Laboratory of Nasal Disease, Beijing Institute of Otolaryngology, Beijing, ChinaBeijing Key Laboratory of Nasal Disease, Beijing Institute of Otolaryngology, Beijing, ChinaDepartment of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, ChinaBeijing Key Laboratory of Nasal Disease, Beijing Institute of Otolaryngology, Beijing, ChinaDepartment of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, ChinaBeijing Key Laboratory of Nasal Disease, Beijing Institute of Otolaryngology, Beijing, ChinaDepartment of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, ChinaBeijing Key Laboratory of Nasal Disease, Beijing Institute of Otolaryngology, Beijing, ChinaDepartment of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, ChinaBeijing Key Laboratory of Nasal Disease, Beijing Institute of Otolaryngology, Beijing, ChinaDepartment of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, ChinaBeijing Key Laboratory of Nasal Disease, Beijing Institute of Otolaryngology, Beijing, ChinaBeijing Key Laboratory of Nasal Disease, Beijing Institute of Otolaryngology, Beijing, ChinaDepartment of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, ChinaBeijing Key Laboratory of Nasal Disease, Beijing Institute of Otolaryngology, Beijing, ChinaDepartment of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, ChinaUpper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University, Ghent, BelgiumUpper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University, Ghent, BelgiumBeijing Key Laboratory of Nasal Disease, Beijing Institute of Otolaryngology, Beijing, ChinaDepartment of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, ChinaDepartment of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, ChinaBeijing Key Laboratory of Nasal Disease, Beijing Institute of Otolaryngology, Beijing, ChinaBackgroundPredicting type 2 chronic rhinosinusitis with nasal polyps (CRSwNP) may help for selection of appropriate surgical procedures or pharmacotherapies in advance. However, an accurate non-invasive method for diagnosis of type 2 CRSwNP is presently unavailable.MethodsTo optimize the technique for collecting nasal secretion (NasSec), 89 CRSwNP patients were tested using nasal packs made with four types of materials. Further, Th2low and Th2highCRSwNP defined by clustering analysis in another 142 CRSwNP patients using tissue biomarkers, in the meanwhile, inflammatory biomarkers were detected in NasSec of the same patients collected by the selected nasal pack. A diagnostic model was established by machine learning algorithms to predict Th2highCRSwNP using NasSecs biomarkers.ResultsConsidering the area under receiver operating characteristic curve (AUC) for IL-5 in NasSec, nasal pack in polyvinyl alcohol (PVA) was superior to other materials for NasSec collection. When Th2low and Th2highCRSwNP clusters were defined, logistic regression and decision tree model for prediction of Th2highCRSwNP demonstrated high AUCs values of 0.92 and 0.90 respectively using biomarkers of NasSecs. Consequently, the pre-pruned decision tree model; based on the levels of IL-5 in NasSec (≤ 15.04 pg/mL), blood eosinophil count (≤ 0.475*109/L) and absence of comorbid asthma; was chosen to define Th2lowCRSwNP from Th2highCRSwNP for routine clinical use.ConclusionsTaken together, a decision tree model based on a combination of NasSec biomarkers and clinical features can accurately define type 2 CRSwNP patients and therefore may be of benefit to patients in receiving appropriate therapies in daily clinical practice.https://www.frontiersin.org/articles/10.3389/fimmu.2022.1054201/fullchronic rhinosinusitis with nasal polypsdiagnostic modelnasal secretionIL-5blood eosinophils
spellingShingle Zaichuan Wang
Zaichuan Wang
Qiqi Wang
Su Duan
Su Duan
Yuling Zhang
Yuling Zhang
Limin Zhao
Limin Zhao
Shujian Zhang
Shujian Zhang
Liusiqi Hao
Liusiqi Hao
Yan Li
Xiangdong Wang
Xiangdong Wang
Chenshuo Wang
Chenshuo Wang
Nan Zhang
Claus Bachert
Luo Zhang
Luo Zhang
Luo Zhang
Feng Lan
A diagnostic model for predicting type 2 nasal polyps using biomarkers in nasal secretion
Frontiers in Immunology
chronic rhinosinusitis with nasal polyps
diagnostic model
nasal secretion
IL-5
blood eosinophils
title A diagnostic model for predicting type 2 nasal polyps using biomarkers in nasal secretion
title_full A diagnostic model for predicting type 2 nasal polyps using biomarkers in nasal secretion
title_fullStr A diagnostic model for predicting type 2 nasal polyps using biomarkers in nasal secretion
title_full_unstemmed A diagnostic model for predicting type 2 nasal polyps using biomarkers in nasal secretion
title_short A diagnostic model for predicting type 2 nasal polyps using biomarkers in nasal secretion
title_sort diagnostic model for predicting type 2 nasal polyps using biomarkers in nasal secretion
topic chronic rhinosinusitis with nasal polyps
diagnostic model
nasal secretion
IL-5
blood eosinophils
url https://www.frontiersin.org/articles/10.3389/fimmu.2022.1054201/full
work_keys_str_mv AT zaichuanwang adiagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT zaichuanwang adiagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT qiqiwang adiagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT suduan adiagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT suduan adiagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT yulingzhang adiagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT yulingzhang adiagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT liminzhao adiagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT liminzhao adiagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT shujianzhang adiagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT shujianzhang adiagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT liusiqihao adiagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT liusiqihao adiagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT yanli adiagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT xiangdongwang adiagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT xiangdongwang adiagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT chenshuowang adiagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT chenshuowang adiagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT nanzhang adiagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT clausbachert adiagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT luozhang adiagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT luozhang adiagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT luozhang adiagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT fenglan adiagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT zaichuanwang diagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT zaichuanwang diagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT qiqiwang diagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT suduan diagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT suduan diagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT yulingzhang diagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT yulingzhang diagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT liminzhao diagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT liminzhao diagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT shujianzhang diagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT shujianzhang diagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT liusiqihao diagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT liusiqihao diagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT yanli diagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT xiangdongwang diagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT xiangdongwang diagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT chenshuowang diagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT chenshuowang diagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT nanzhang diagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT clausbachert diagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT luozhang diagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT luozhang diagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT luozhang diagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion
AT fenglan diagnosticmodelforpredictingtype2nasalpolypsusingbiomarkersinnasalsecretion