Planar random-cluster model: scaling relations

This paper studies the critical and near-critical regimes of the planar random-cluster model on $\mathbb Z^2$ with cluster-weight $q\in [1,4]$ using novel coupling techniques. More precisely, we derive the scaling relations between the critical exponents $\beta $ , $\gamma $...

Full description

Bibliographic Details
Main Authors: Hugo Duminil-Copin, Ioan Manolescu
Format: Article
Language:English
Published: Cambridge University Press 2022-01-01
Series:Forum of Mathematics, Pi
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2050508622000166/type/journal_article
_version_ 1811156238954659840
author Hugo Duminil-Copin
Ioan Manolescu
author_facet Hugo Duminil-Copin
Ioan Manolescu
author_sort Hugo Duminil-Copin
collection DOAJ
description This paper studies the critical and near-critical regimes of the planar random-cluster model on $\mathbb Z^2$ with cluster-weight $q\in [1,4]$ using novel coupling techniques. More precisely, we derive the scaling relations between the critical exponents $\beta $ , $\gamma $ , $\delta $ , $\eta $ , $\nu $ , $\zeta $ as well as $\alpha $ (when $\alpha \ge 0$ ). As a key input, we show the stability of crossing probabilities in the near-critical regime using new interpretations of the notion of the influence of an edge in terms of the rate of mixing. As a byproduct, we derive a generalisation of Kesten’s classical scaling relation for Bernoulli percolation involving the ‘mixing rate’ critical exponent $\iota $ replacing the four-arm event exponent $\xi _4$ .
first_indexed 2024-04-10T04:48:17Z
format Article
id doaj.art-6c3c3af98b9941c9aa00ecedcf181799
institution Directory Open Access Journal
issn 2050-5086
language English
last_indexed 2024-04-10T04:48:17Z
publishDate 2022-01-01
publisher Cambridge University Press
record_format Article
series Forum of Mathematics, Pi
spelling doaj.art-6c3c3af98b9941c9aa00ecedcf1817992023-03-09T12:34:22ZengCambridge University PressForum of Mathematics, Pi2050-50862022-01-011010.1017/fmp.2022.16Planar random-cluster model: scaling relationsHugo Duminil-Copin0https://orcid.org/0000-0002-7609-2816Ioan Manolescu1https://orcid.org/0000-0001-9140-5430Université de Genève, 7-9 Rue du Conseil Général, 1205 Genève, Switzerland Institut des Hautes Études Scientifiques, 35 route de Chartres, 91440 Bures-Sur-Yvette, France; E-mail:Université de Fribourg, Département de mathématiques, 23 chemin du Musée, CH-1700 Fribourg, Switzerland; E-mail:This paper studies the critical and near-critical regimes of the planar random-cluster model on $\mathbb Z^2$ with cluster-weight $q\in [1,4]$ using novel coupling techniques. More precisely, we derive the scaling relations between the critical exponents $\beta $ , $\gamma $ , $\delta $ , $\eta $ , $\nu $ , $\zeta $ as well as $\alpha $ (when $\alpha \ge 0$ ). As a key input, we show the stability of crossing probabilities in the near-critical regime using new interpretations of the notion of the influence of an edge in terms of the rate of mixing. As a byproduct, we derive a generalisation of Kesten’s classical scaling relation for Bernoulli percolation involving the ‘mixing rate’ critical exponent $\iota $ replacing the four-arm event exponent $\xi _4$ .https://www.cambridge.org/core/product/identifier/S2050508622000166/type/journal_article60K35
spellingShingle Hugo Duminil-Copin
Ioan Manolescu
Planar random-cluster model: scaling relations
Forum of Mathematics, Pi
60K35
title Planar random-cluster model: scaling relations
title_full Planar random-cluster model: scaling relations
title_fullStr Planar random-cluster model: scaling relations
title_full_unstemmed Planar random-cluster model: scaling relations
title_short Planar random-cluster model: scaling relations
title_sort planar random cluster model scaling relations
topic 60K35
url https://www.cambridge.org/core/product/identifier/S2050508622000166/type/journal_article
work_keys_str_mv AT hugoduminilcopin planarrandomclustermodelscalingrelations
AT ioanmanolescu planarrandomclustermodelscalingrelations