A Two-Stage Framework for Directed Hypergraph Link Prediction

Hypergraphs, as a special type of graph, can be leveraged to better model relationships among multiple entities. In this article, we focus on the task of hyperlink prediction in directed hypergraphs, which finds a wide spectrum of applications in knowledge graphs, chem-informatics, bio-informatics,...

Full description

Bibliographic Details
Main Authors: Guanchen Xiao, Jinzhi Liao, Zhen Tan, Xiaonan Zhang, Xiang Zhao
Format: Article
Language:English
Published: MDPI AG 2022-07-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/14/2372
Description
Summary:Hypergraphs, as a special type of graph, can be leveraged to better model relationships among multiple entities. In this article, we focus on the task of hyperlink prediction in directed hypergraphs, which finds a wide spectrum of applications in knowledge graphs, chem-informatics, bio-informatics, etc. Existing methods handling the task overlook the order constraints of the hyperlink’s direction and fail to exploit features of all entities covered by a hyperlink. To make up for the deficiency, we present a performant pipelined model, i.e., a two-stage framework for directed hyperlink prediction method (TF-DHP), which equally considers the entity’s contribution to the form of hyperlinks, and emphasizes not only the fixed order between two parts but also the randomness inside each part. The TF-DHP incorporates two tailored modules: a Tucker decomposition-based module for hyperlink prediction, and a BiLSTM-based module for direction inference. Extensive experiments on benchmarks—WikiPeople, JF17K, and ReVerb15K—demonstrate the effectiveness and universality of our TF-DHP model, leading to state-of-the-art performance.
ISSN:2227-7390