Quiescence, Stemness and Adipogenic Differentiation Capacity in Human DLK1<sup>−</sup>/CD34<sup>+</sup>/CD24<sup>+</sup> Adipose Stem/Progenitor Cells

We explore the status of quiescence, stemness and adipogenic differentiation capacity in adipose stem/progenitor cells (ASCs) ex vivo, immediately after isolation from human subcutaneous white adipose tissue, by sorting the stromal vascular fraction into cell-surface DLK1<sup>+</sup>/CD3...

Full description

Bibliographic Details
Main Authors: Florian M. Hatzmann, Asim Ejaz, G. Jan Wiegers, Markus Mandl, Camille Brucker, Stefan Lechner, Tina Rauchenwald, Marit Zwierzina, Saphira Baumgarten, Sonja Wagner, Monika Mattesich, Petra Waldegger, Gerhard Pierer, Werner Zwerschke
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Cells
Subjects:
Online Access:https://www.mdpi.com/2073-4409/10/2/214
_version_ 1827598829451476992
author Florian M. Hatzmann
Asim Ejaz
G. Jan Wiegers
Markus Mandl
Camille Brucker
Stefan Lechner
Tina Rauchenwald
Marit Zwierzina
Saphira Baumgarten
Sonja Wagner
Monika Mattesich
Petra Waldegger
Gerhard Pierer
Werner Zwerschke
author_facet Florian M. Hatzmann
Asim Ejaz
G. Jan Wiegers
Markus Mandl
Camille Brucker
Stefan Lechner
Tina Rauchenwald
Marit Zwierzina
Saphira Baumgarten
Sonja Wagner
Monika Mattesich
Petra Waldegger
Gerhard Pierer
Werner Zwerschke
author_sort Florian M. Hatzmann
collection DOAJ
description We explore the status of quiescence, stemness and adipogenic differentiation capacity in adipose stem/progenitor cells (ASCs) ex vivo, immediately after isolation from human subcutaneous white adipose tissue, by sorting the stromal vascular fraction into cell-surface DLK1<sup>+</sup>/CD34<sup>−</sup>, DLK1<sup>+</sup>/CD34<sup>dim</sup> and DLK1<sup>−</sup>/CD34<sup>+</sup> cells. We demonstrate that DLK1<sup>−</sup>/CD34<sup>+</sup> cells, the only population exhibiting proliferative and adipogenic capacity, express ex vivo the bonafide quiescence markers p21<sup>Cip1</sup>, p27<sup>Kip1</sup> and p57<sup>Kip2</sup> but neither proliferation markers nor the senescence marker p16<sup>Ink4a</sup>. The pluripotency markers NANOG, SOX2 and OCT4 are barely detectable in ex vivo ASCs while the somatic stemness factors, c-MYC and KLF4 and the early adipogenic factor C/EBPβ are highly expressed. Further sorting of ASCs into DLK1<sup>−</sup>/CD34<sup>+</sup>/CD24<sup>−</sup> and DLK1<sup>−</sup>/CD34<sup>+</sup>/CD24<sup>+</sup> fractions shows that KLF4 and c-MYC are higher expressed in DLK1<sup>−</sup>/CD34<sup>+</sup>/CD24<sup>+</sup> cells correlating with higher colony formation capacity and considerably lower adipogenic activity. Proliferation capacity is similar in both populations. Next, we show that ASCs routinely isolated by plastic-adherence are DLK1<sup>−</sup>/CD34<sup>+</sup>/CD24<sup>+</sup>. Intriguingly, CD24 knock-down in these cells reduces proliferation and adipogenesis. In conclusion, DLK1<sup>−</sup>/CD34<sup>+</sup> ASCs in human sWAT exist in a quiescent state, express high levels of somatic stemness factors and the early adipogenic transcription factor C/EBPβ but senescence and pluripotency markers are barely detectable. Moreover, our data indicate that CD24 is necessary for adequate ASC proliferation and adipogenesis and that stemness is higher and adipogenic capacity lower in DLK1<sup>−</sup>/CD34<sup>+</sup>/CD24<sup>+</sup> relative to DLK1<sup>−</sup>/CD34<sup>+</sup>/CD24<sup>−</sup> subpopulations.
first_indexed 2024-03-09T04:01:30Z
format Article
id doaj.art-6c5b49aa2b4c4af498332e175a64e09f
institution Directory Open Access Journal
issn 2073-4409
language English
last_indexed 2024-03-09T04:01:30Z
publishDate 2021-01-01
publisher MDPI AG
record_format Article
series Cells
spelling doaj.art-6c5b49aa2b4c4af498332e175a64e09f2023-12-03T14:12:59ZengMDPI AGCells2073-44092021-01-0110221410.3390/cells10020214Quiescence, Stemness and Adipogenic Differentiation Capacity in Human DLK1<sup>−</sup>/CD34<sup>+</sup>/CD24<sup>+</sup> Adipose Stem/Progenitor CellsFlorian M. Hatzmann0Asim Ejaz1G. Jan Wiegers2Markus Mandl3Camille Brucker4Stefan Lechner5Tina Rauchenwald6Marit Zwierzina7Saphira Baumgarten8Sonja Wagner9Monika Mattesich10Petra Waldegger11Gerhard Pierer12Werner Zwerschke13Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, AustriaDivision of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, AustriaDivision of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, AustriaDivision of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, AustriaDivision of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, AustriaDivision of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, AustriaDepartment of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, AustriaDepartment of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, AustriaDivision of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, AustriaDivision of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, AustriaDepartment of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, AustriaDivision of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, AustriaDepartment of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, AustriaDivision of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, AustriaWe explore the status of quiescence, stemness and adipogenic differentiation capacity in adipose stem/progenitor cells (ASCs) ex vivo, immediately after isolation from human subcutaneous white adipose tissue, by sorting the stromal vascular fraction into cell-surface DLK1<sup>+</sup>/CD34<sup>−</sup>, DLK1<sup>+</sup>/CD34<sup>dim</sup> and DLK1<sup>−</sup>/CD34<sup>+</sup> cells. We demonstrate that DLK1<sup>−</sup>/CD34<sup>+</sup> cells, the only population exhibiting proliferative and adipogenic capacity, express ex vivo the bonafide quiescence markers p21<sup>Cip1</sup>, p27<sup>Kip1</sup> and p57<sup>Kip2</sup> but neither proliferation markers nor the senescence marker p16<sup>Ink4a</sup>. The pluripotency markers NANOG, SOX2 and OCT4 are barely detectable in ex vivo ASCs while the somatic stemness factors, c-MYC and KLF4 and the early adipogenic factor C/EBPβ are highly expressed. Further sorting of ASCs into DLK1<sup>−</sup>/CD34<sup>+</sup>/CD24<sup>−</sup> and DLK1<sup>−</sup>/CD34<sup>+</sup>/CD24<sup>+</sup> fractions shows that KLF4 and c-MYC are higher expressed in DLK1<sup>−</sup>/CD34<sup>+</sup>/CD24<sup>+</sup> cells correlating with higher colony formation capacity and considerably lower adipogenic activity. Proliferation capacity is similar in both populations. Next, we show that ASCs routinely isolated by plastic-adherence are DLK1<sup>−</sup>/CD34<sup>+</sup>/CD24<sup>+</sup>. Intriguingly, CD24 knock-down in these cells reduces proliferation and adipogenesis. In conclusion, DLK1<sup>−</sup>/CD34<sup>+</sup> ASCs in human sWAT exist in a quiescent state, express high levels of somatic stemness factors and the early adipogenic transcription factor C/EBPβ but senescence and pluripotency markers are barely detectable. Moreover, our data indicate that CD24 is necessary for adequate ASC proliferation and adipogenesis and that stemness is higher and adipogenic capacity lower in DLK1<sup>−</sup>/CD34<sup>+</sup>/CD24<sup>+</sup> relative to DLK1<sup>−</sup>/CD34<sup>+</sup>/CD24<sup>−</sup> subpopulations.https://www.mdpi.com/2073-4409/10/2/214ex vivohuman adipose stem/progenitor cellsquiescencesenescencestemnessproliferation
spellingShingle Florian M. Hatzmann
Asim Ejaz
G. Jan Wiegers
Markus Mandl
Camille Brucker
Stefan Lechner
Tina Rauchenwald
Marit Zwierzina
Saphira Baumgarten
Sonja Wagner
Monika Mattesich
Petra Waldegger
Gerhard Pierer
Werner Zwerschke
Quiescence, Stemness and Adipogenic Differentiation Capacity in Human DLK1<sup>−</sup>/CD34<sup>+</sup>/CD24<sup>+</sup> Adipose Stem/Progenitor Cells
Cells
ex vivo
human adipose stem/progenitor cells
quiescence
senescence
stemness
proliferation
title Quiescence, Stemness and Adipogenic Differentiation Capacity in Human DLK1<sup>−</sup>/CD34<sup>+</sup>/CD24<sup>+</sup> Adipose Stem/Progenitor Cells
title_full Quiescence, Stemness and Adipogenic Differentiation Capacity in Human DLK1<sup>−</sup>/CD34<sup>+</sup>/CD24<sup>+</sup> Adipose Stem/Progenitor Cells
title_fullStr Quiescence, Stemness and Adipogenic Differentiation Capacity in Human DLK1<sup>−</sup>/CD34<sup>+</sup>/CD24<sup>+</sup> Adipose Stem/Progenitor Cells
title_full_unstemmed Quiescence, Stemness and Adipogenic Differentiation Capacity in Human DLK1<sup>−</sup>/CD34<sup>+</sup>/CD24<sup>+</sup> Adipose Stem/Progenitor Cells
title_short Quiescence, Stemness and Adipogenic Differentiation Capacity in Human DLK1<sup>−</sup>/CD34<sup>+</sup>/CD24<sup>+</sup> Adipose Stem/Progenitor Cells
title_sort quiescence stemness and adipogenic differentiation capacity in human dlk1 sup sup cd34 sup sup cd24 sup sup adipose stem progenitor cells
topic ex vivo
human adipose stem/progenitor cells
quiescence
senescence
stemness
proliferation
url https://www.mdpi.com/2073-4409/10/2/214
work_keys_str_mv AT florianmhatzmann quiescencestemnessandadipogenicdifferentiationcapacityinhumandlk1supsupcd34supsupcd24supsupadiposestemprogenitorcells
AT asimejaz quiescencestemnessandadipogenicdifferentiationcapacityinhumandlk1supsupcd34supsupcd24supsupadiposestemprogenitorcells
AT gjanwiegers quiescencestemnessandadipogenicdifferentiationcapacityinhumandlk1supsupcd34supsupcd24supsupadiposestemprogenitorcells
AT markusmandl quiescencestemnessandadipogenicdifferentiationcapacityinhumandlk1supsupcd34supsupcd24supsupadiposestemprogenitorcells
AT camillebrucker quiescencestemnessandadipogenicdifferentiationcapacityinhumandlk1supsupcd34supsupcd24supsupadiposestemprogenitorcells
AT stefanlechner quiescencestemnessandadipogenicdifferentiationcapacityinhumandlk1supsupcd34supsupcd24supsupadiposestemprogenitorcells
AT tinarauchenwald quiescencestemnessandadipogenicdifferentiationcapacityinhumandlk1supsupcd34supsupcd24supsupadiposestemprogenitorcells
AT maritzwierzina quiescencestemnessandadipogenicdifferentiationcapacityinhumandlk1supsupcd34supsupcd24supsupadiposestemprogenitorcells
AT saphirabaumgarten quiescencestemnessandadipogenicdifferentiationcapacityinhumandlk1supsupcd34supsupcd24supsupadiposestemprogenitorcells
AT sonjawagner quiescencestemnessandadipogenicdifferentiationcapacityinhumandlk1supsupcd34supsupcd24supsupadiposestemprogenitorcells
AT monikamattesich quiescencestemnessandadipogenicdifferentiationcapacityinhumandlk1supsupcd34supsupcd24supsupadiposestemprogenitorcells
AT petrawaldegger quiescencestemnessandadipogenicdifferentiationcapacityinhumandlk1supsupcd34supsupcd24supsupadiposestemprogenitorcells
AT gerhardpierer quiescencestemnessandadipogenicdifferentiationcapacityinhumandlk1supsupcd34supsupcd24supsupadiposestemprogenitorcells
AT wernerzwerschke quiescencestemnessandadipogenicdifferentiationcapacityinhumandlk1supsupcd34supsupcd24supsupadiposestemprogenitorcells