Pattern Recognition of EMG Signals by Machine Learning for the Control of a Manipulator Robot

Human Machine Interfaces (HMI) principles are for the development of interfaces for assistance or support systems in physiotherapy or rehabilitation processes. One of the main problems is the degree of customization when applying some rehabilitation therapy or when adapting an assistance system to t...

Full description

Bibliographic Details
Main Authors: Francisco Pérez-Reynoso, Neín Farrera-Vazquez, César Capetillo, Nestor Méndez-Lozano, Carlos González-Gutiérrez, Emmanuel López-Neri
Format: Article
Language:English
Published: MDPI AG 2022-04-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/22/9/3424
_version_ 1827671370556768256
author Francisco Pérez-Reynoso
Neín Farrera-Vazquez
César Capetillo
Nestor Méndez-Lozano
Carlos González-Gutiérrez
Emmanuel López-Neri
author_facet Francisco Pérez-Reynoso
Neín Farrera-Vazquez
César Capetillo
Nestor Méndez-Lozano
Carlos González-Gutiérrez
Emmanuel López-Neri
author_sort Francisco Pérez-Reynoso
collection DOAJ
description Human Machine Interfaces (HMI) principles are for the development of interfaces for assistance or support systems in physiotherapy or rehabilitation processes. One of the main problems is the degree of customization when applying some rehabilitation therapy or when adapting an assistance system to the individual characteristics of the users. To solve this inconvenience, it is proposed to implement a database of surface Electromyography (sEMG) of a channel in healthy individuals for pattern recognition through Neural Networks of contraction in the muscular region of the biceps brachii. Each movement is labeled using the One-Hot Encoding technique, which activates a state machine to control the position of an anthropomorphic manipulator robot and validate the response time of the designed HMI. Preliminary results show that the learning curve decreases when customizing the interface. The developed system uses muscle contraction to direct the position of the end effector of a virtual robot. The classification of Electromyography (EMG) signals is obtained to generate trajectories in real time by designing a test platform in LabVIEW.
first_indexed 2024-03-10T03:41:00Z
format Article
id doaj.art-6c696b98c80d45c68b2e5af6e81e2b80
institution Directory Open Access Journal
issn 1424-8220
language English
last_indexed 2024-03-10T03:41:00Z
publishDate 2022-04-01
publisher MDPI AG
record_format Article
series Sensors
spelling doaj.art-6c696b98c80d45c68b2e5af6e81e2b802023-11-23T09:18:18ZengMDPI AGSensors1424-82202022-04-01229342410.3390/s22093424Pattern Recognition of EMG Signals by Machine Learning for the Control of a Manipulator RobotFrancisco Pérez-Reynoso0Neín Farrera-Vazquez1César Capetillo2Nestor Méndez-Lozano3Carlos González-Gutiérrez4Emmanuel López-Neri5Centro de Investigación, Innovación y Desarrollo Tecnológico UVM (CIIDETEC-UVM), Universidad del Valle de Mexico, Querétaro 76230, MexicoCentro de Investigación, Innovación y Desarrollo Tecnológico UVM (CIIDETEC-UVM), Universidad del Valle de Mexico, Querétaro 76230, MexicoCentro de Investigación, Innovación y Desarrollo Tecnológico UVM (CIIDETEC-UVM), Universidad del Valle de Mexico, Querétaro 76230, MexicoCentro de Investigación, Innovación y Desarrollo Tecnológico UVM (CIIDETEC-UVM), Universidad del Valle de Mexico, Querétaro 76230, MexicoCentro de Investigación, Innovación y Desarrollo Tecnológico UVM (CIIDETEC-UVM), Universidad del Valle de Mexico, Querétaro 76230, MexicoCentro de Investigación, Innovación y Desarrollo Tecnológico UVM (CIIDETEC-UVM), Universidad del Valle de Mexico, Querétaro 76230, MexicoHuman Machine Interfaces (HMI) principles are for the development of interfaces for assistance or support systems in physiotherapy or rehabilitation processes. One of the main problems is the degree of customization when applying some rehabilitation therapy or when adapting an assistance system to the individual characteristics of the users. To solve this inconvenience, it is proposed to implement a database of surface Electromyography (sEMG) of a channel in healthy individuals for pattern recognition through Neural Networks of contraction in the muscular region of the biceps brachii. Each movement is labeled using the One-Hot Encoding technique, which activates a state machine to control the position of an anthropomorphic manipulator robot and validate the response time of the designed HMI. Preliminary results show that the learning curve decreases when customizing the interface. The developed system uses muscle contraction to direct the position of the end effector of a virtual robot. The classification of Electromyography (EMG) signals is obtained to generate trajectories in real time by designing a test platform in LabVIEW.https://www.mdpi.com/1424-8220/22/9/3424EMGpattern recognitionmachine learningrobotcyber-physical systems
spellingShingle Francisco Pérez-Reynoso
Neín Farrera-Vazquez
César Capetillo
Nestor Méndez-Lozano
Carlos González-Gutiérrez
Emmanuel López-Neri
Pattern Recognition of EMG Signals by Machine Learning for the Control of a Manipulator Robot
Sensors
EMG
pattern recognition
machine learning
robot
cyber-physical systems
title Pattern Recognition of EMG Signals by Machine Learning for the Control of a Manipulator Robot
title_full Pattern Recognition of EMG Signals by Machine Learning for the Control of a Manipulator Robot
title_fullStr Pattern Recognition of EMG Signals by Machine Learning for the Control of a Manipulator Robot
title_full_unstemmed Pattern Recognition of EMG Signals by Machine Learning for the Control of a Manipulator Robot
title_short Pattern Recognition of EMG Signals by Machine Learning for the Control of a Manipulator Robot
title_sort pattern recognition of emg signals by machine learning for the control of a manipulator robot
topic EMG
pattern recognition
machine learning
robot
cyber-physical systems
url https://www.mdpi.com/1424-8220/22/9/3424
work_keys_str_mv AT franciscoperezreynoso patternrecognitionofemgsignalsbymachinelearningforthecontrolofamanipulatorrobot
AT neinfarreravazquez patternrecognitionofemgsignalsbymachinelearningforthecontrolofamanipulatorrobot
AT cesarcapetillo patternrecognitionofemgsignalsbymachinelearningforthecontrolofamanipulatorrobot
AT nestormendezlozano patternrecognitionofemgsignalsbymachinelearningforthecontrolofamanipulatorrobot
AT carlosgonzalezgutierrez patternrecognitionofemgsignalsbymachinelearningforthecontrolofamanipulatorrobot
AT emmanuellopezneri patternrecognitionofemgsignalsbymachinelearningforthecontrolofamanipulatorrobot