Significance of Dufour and Soret aspects on dynamics of water based ternary hybrid nanofluid flow in a 3D computational domain
Abstract The prime motive to conduct this communication is to explicate hydrothermal attributes of water by inducing new composition of nanoparticles termed as ternary particles. For this purpose, two differently natured groups one with lesser densities (Carbon nanotubes, Graphene and Aluminium oxid...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2023-03-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-023-30609-9 |
_version_ | 1827984656263282688 |
---|---|
author | Sardar Bilal Muhammad Imran Asjad Shams ul Haq Musawa Yahya Almusawa ElSayed M. Tag-ElDin Farhat Ali |
author_facet | Sardar Bilal Muhammad Imran Asjad Shams ul Haq Musawa Yahya Almusawa ElSayed M. Tag-ElDin Farhat Ali |
author_sort | Sardar Bilal |
collection | DOAJ |
description | Abstract The prime motive to conduct this communication is to explicate hydrothermal attributes of water by inducing new composition of nanoparticles termed as ternary particles. For this purpose, two differently natured groups one with lesser densities (Carbon nanotubes, Graphene and Aluminium oxide) and with higher densities (Copper oxide, Copper and Silver) are accounted. A 3D permeable surface is considered as a physical configuration of problem by providing dual stretching. Initially, mathematical structuring in dimensional representation expressing the constitutive relations for mass, momentum and energy conservation is manifested. Later on, a set of similar variables are executed to express attained coupled system into ordinary form. Numerical simulations are performed to find solution by employing shooting and RK-4 methods in conjunction. Description about change is displayed through graphical visualization. Subsequently, temperature distribution and heat flux coefficient against sundry variables are also measured and comprehensively discussed in pictorial and tabular format. Wall drag coefficients along (x, y) directions are also computed. It is inferred from the outcomes that velocity, temperature and concentration of base fluid is higher for ternary group 1 containing particles of low densities than for group 2 with more denser particles. It is also deduced that elevation in temperature of fluid is revealed against Soret number whereas contrary aspects is observed in view of concentration distribution. Dufour number has declining impact on temperature profile whereas it upsurges the mass distribution. It is depicted that skin friction in case of group containing particles with less densities are more than other group. |
first_indexed | 2024-04-09T23:02:53Z |
format | Article |
id | doaj.art-6c7b8f8a622a47c7a3144f27fcfd9dc0 |
institution | Directory Open Access Journal |
issn | 2045-2322 |
language | English |
last_indexed | 2024-04-09T23:02:53Z |
publishDate | 2023-03-01 |
publisher | Nature Portfolio |
record_format | Article |
series | Scientific Reports |
spelling | doaj.art-6c7b8f8a622a47c7a3144f27fcfd9dc02023-03-22T10:52:49ZengNature PortfolioScientific Reports2045-23222023-03-0113112010.1038/s41598-023-30609-9Significance of Dufour and Soret aspects on dynamics of water based ternary hybrid nanofluid flow in a 3D computational domainSardar Bilal0Muhammad Imran Asjad1Shams ul Haq2Musawa Yahya Almusawa3ElSayed M. Tag-ElDin4Farhat Ali5Department of Mathematics, Air UniversityDepartment of Mathematics, University of Management and TechnologyDepartment of Mathematics, Air UniversityDepartment of Mathematics, Faculty of Science, Jazan UniversityFaculty of Engineering and Technology, Future University in EgyptDepartment of Architecture and Planning, College of Engineering, King Khalid UniversityAbstract The prime motive to conduct this communication is to explicate hydrothermal attributes of water by inducing new composition of nanoparticles termed as ternary particles. For this purpose, two differently natured groups one with lesser densities (Carbon nanotubes, Graphene and Aluminium oxide) and with higher densities (Copper oxide, Copper and Silver) are accounted. A 3D permeable surface is considered as a physical configuration of problem by providing dual stretching. Initially, mathematical structuring in dimensional representation expressing the constitutive relations for mass, momentum and energy conservation is manifested. Later on, a set of similar variables are executed to express attained coupled system into ordinary form. Numerical simulations are performed to find solution by employing shooting and RK-4 methods in conjunction. Description about change is displayed through graphical visualization. Subsequently, temperature distribution and heat flux coefficient against sundry variables are also measured and comprehensively discussed in pictorial and tabular format. Wall drag coefficients along (x, y) directions are also computed. It is inferred from the outcomes that velocity, temperature and concentration of base fluid is higher for ternary group 1 containing particles of low densities than for group 2 with more denser particles. It is also deduced that elevation in temperature of fluid is revealed against Soret number whereas contrary aspects is observed in view of concentration distribution. Dufour number has declining impact on temperature profile whereas it upsurges the mass distribution. It is depicted that skin friction in case of group containing particles with less densities are more than other group.https://doi.org/10.1038/s41598-023-30609-9 |
spellingShingle | Sardar Bilal Muhammad Imran Asjad Shams ul Haq Musawa Yahya Almusawa ElSayed M. Tag-ElDin Farhat Ali Significance of Dufour and Soret aspects on dynamics of water based ternary hybrid nanofluid flow in a 3D computational domain Scientific Reports |
title | Significance of Dufour and Soret aspects on dynamics of water based ternary hybrid nanofluid flow in a 3D computational domain |
title_full | Significance of Dufour and Soret aspects on dynamics of water based ternary hybrid nanofluid flow in a 3D computational domain |
title_fullStr | Significance of Dufour and Soret aspects on dynamics of water based ternary hybrid nanofluid flow in a 3D computational domain |
title_full_unstemmed | Significance of Dufour and Soret aspects on dynamics of water based ternary hybrid nanofluid flow in a 3D computational domain |
title_short | Significance of Dufour and Soret aspects on dynamics of water based ternary hybrid nanofluid flow in a 3D computational domain |
title_sort | significance of dufour and soret aspects on dynamics of water based ternary hybrid nanofluid flow in a 3d computational domain |
url | https://doi.org/10.1038/s41598-023-30609-9 |
work_keys_str_mv | AT sardarbilal significanceofdufourandsoretaspectsondynamicsofwaterbasedternaryhybridnanofluidflowina3dcomputationaldomain AT muhammadimranasjad significanceofdufourandsoretaspectsondynamicsofwaterbasedternaryhybridnanofluidflowina3dcomputationaldomain AT shamsulhaq significanceofdufourandsoretaspectsondynamicsofwaterbasedternaryhybridnanofluidflowina3dcomputationaldomain AT musawayahyaalmusawa significanceofdufourandsoretaspectsondynamicsofwaterbasedternaryhybridnanofluidflowina3dcomputationaldomain AT elsayedmtageldin significanceofdufourandsoretaspectsondynamicsofwaterbasedternaryhybridnanofluidflowina3dcomputationaldomain AT farhatali significanceofdufourandsoretaspectsondynamicsofwaterbasedternaryhybridnanofluidflowina3dcomputationaldomain |