Two-Parameter Stochastic Weibull Diffusion Model: Statistical Inference and Application to Real Modeling Example

This paper describes the use of the non-homogeneous stochastic Weibull diffusion process, based on the two-parameter Weibull density function (the trend of which is proportional to the two-parameter Weibull probability density function). The trend function (conditioned and non-conditioned) is analyz...

Full description

Bibliographic Details
Main Authors: Ahmed Nafidi, Meriem Bahij, Ramón Gutiérrez-Sánchez, Boujemâa Achchab
Format: Article
Language:English
Published: MDPI AG 2020-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/2/160
_version_ 1819082767629025280
author Ahmed Nafidi
Meriem Bahij
Ramón Gutiérrez-Sánchez
Boujemâa Achchab
author_facet Ahmed Nafidi
Meriem Bahij
Ramón Gutiérrez-Sánchez
Boujemâa Achchab
author_sort Ahmed Nafidi
collection DOAJ
description This paper describes the use of the non-homogeneous stochastic Weibull diffusion process, based on the two-parameter Weibull density function (the trend of which is proportional to the two-parameter Weibull probability density function). The trend function (conditioned and non-conditioned) is analyzed to obtain fits and forecasts for a real data set, taking into account the mean value of the process, the maximum likelihood estimators of the parameters of the model and the computational problems that may arise. To carry out the task, we employ the simulated annealing method for finding the estimators values and achieve the study. Finally, to evaluate the capacity of the model, the study is applied to real modeling data where we discuss the accuracy according to error measures.
first_indexed 2024-12-21T20:21:54Z
format Article
id doaj.art-6c921b76a415424bbf9869807cc19d78
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-12-21T20:21:54Z
publishDate 2020-01-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-6c921b76a415424bbf9869807cc19d782022-12-21T18:51:28ZengMDPI AGMathematics2227-73902020-01-018216010.3390/math8020160math8020160Two-Parameter Stochastic Weibull Diffusion Model: Statistical Inference and Application to Real Modeling ExampleAhmed Nafidi0Meriem Bahij1Ramón Gutiérrez-Sánchez2Boujemâa Achchab3Department of mathematics and informatics, LAMSAD, National School of Applied Sciences of Berrechid, University of Hassan 1, Avenue de l’université, BP 280, Berrechid 26100, MoroccoDepartment of mathematics and informatics, LAMSAD, National School of Applied Sciences of Berrechid, University of Hassan 1, Avenue de l’université, BP 280, Berrechid 26100, MoroccoDepartment of Statistics and Operational Research, University of Granada, Facultad de Ciencias, Campus de Fuentenueva, 18071 Granada, SpainDepartment of mathematics and informatics, LAMSAD, National School of Applied Sciences of Berrechid, University of Hassan 1, Avenue de l’université, BP 280, Berrechid 26100, MoroccoThis paper describes the use of the non-homogeneous stochastic Weibull diffusion process, based on the two-parameter Weibull density function (the trend of which is proportional to the two-parameter Weibull probability density function). The trend function (conditioned and non-conditioned) is analyzed to obtain fits and forecasts for a real data set, taking into account the mean value of the process, the maximum likelihood estimators of the parameters of the model and the computational problems that may arise. To carry out the task, we employ the simulated annealing method for finding the estimators values and achieve the study. Finally, to evaluate the capacity of the model, the study is applied to real modeling data where we discuss the accuracy according to error measures.https://www.mdpi.com/2227-7390/8/2/160weibull distributionstochastic diffusion processlikelihood estimationstatistical computationsimulationage dependency ratio
spellingShingle Ahmed Nafidi
Meriem Bahij
Ramón Gutiérrez-Sánchez
Boujemâa Achchab
Two-Parameter Stochastic Weibull Diffusion Model: Statistical Inference and Application to Real Modeling Example
Mathematics
weibull distribution
stochastic diffusion process
likelihood estimation
statistical computation
simulation
age dependency ratio
title Two-Parameter Stochastic Weibull Diffusion Model: Statistical Inference and Application to Real Modeling Example
title_full Two-Parameter Stochastic Weibull Diffusion Model: Statistical Inference and Application to Real Modeling Example
title_fullStr Two-Parameter Stochastic Weibull Diffusion Model: Statistical Inference and Application to Real Modeling Example
title_full_unstemmed Two-Parameter Stochastic Weibull Diffusion Model: Statistical Inference and Application to Real Modeling Example
title_short Two-Parameter Stochastic Weibull Diffusion Model: Statistical Inference and Application to Real Modeling Example
title_sort two parameter stochastic weibull diffusion model statistical inference and application to real modeling example
topic weibull distribution
stochastic diffusion process
likelihood estimation
statistical computation
simulation
age dependency ratio
url https://www.mdpi.com/2227-7390/8/2/160
work_keys_str_mv AT ahmednafidi twoparameterstochasticweibulldiffusionmodelstatisticalinferenceandapplicationtorealmodelingexample
AT meriembahij twoparameterstochasticweibulldiffusionmodelstatisticalinferenceandapplicationtorealmodelingexample
AT ramongutierrezsanchez twoparameterstochasticweibulldiffusionmodelstatisticalinferenceandapplicationtorealmodelingexample
AT boujemaaachchab twoparameterstochasticweibulldiffusionmodelstatisticalinferenceandapplicationtorealmodelingexample