An Evaluation of Executive Control Function and Its Relationship with Driving Performance

The driver’s attentional state is a significant human factor in traffic safety. The executive control process is a crucial sub-function of attention. To explore the relationship between the driver’s driving performance and executive control function, a total of 35 healthy subjects were invited to ta...

Full description

Bibliographic Details
Main Authors: Lirong Yan, Tiantian Wen, Jiawen Zhang, Le Chang, Yi Wang, Mutian Liu, Changhao Ding, Fuwu Yan
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/21/5/1763
Description
Summary:The driver’s attentional state is a significant human factor in traffic safety. The executive control process is a crucial sub-function of attention. To explore the relationship between the driver’s driving performance and executive control function, a total of 35 healthy subjects were invited to take part in a simulated driving experiment and a task-cuing experiment. The subjects were divided into three groups according to their driving performance (aberrant driving behaviors, including lapses and errors) by the clustering method. Then the performance efficiency and electroencephalogram (EEG) data acquired in the task-cuing experiment were compared among the three groups. The effect of group, task transition types and cue-stimulus intervals (CSIs) were statistically analyzed by using the repeated measures analysis of variance (ANOVA) and the post hoc simple effect analysis. The subjects with lower driving error rates had better executive control efficiency as indicated by the reaction time (RT) and error rate in the task-cuing experiment, which was related with their better capability to allocate the available attentional resources, to express the external stimuli and to process the information in the nervous system, especially the fronto-parietal network. The activation degree of the frontal area fluctuated, and of the parietal area gradually increased along with the increase of CSI, which implied the role of the frontal area in task setting reconstruction and working memory maintaining, and of the parietal area in stimulus–Response (S–R) mapping expression. This research presented evidence of the close relationship between executive control functions and driving performance.
ISSN:1424-8220