ERG-28 controls BK channel trafficking in the ER to regulate synaptic function and alcohol response in C. elegans

Voltage- and calcium-dependent BK channels regulate calcium-dependent cellular events such as neurotransmitter release by limiting calcium influx. Their plasma membrane abundance is an important factor in determining BK current and thus regulation of calcium-dependent events. In C. elegans, we show...

Full description

Bibliographic Details
Main Authors: Kelly H Oh, James J Haney, Xiaohong Wang, Chiou-Fen Chuang, Janet E Richmond, Hongkyun Kim
Format: Article
Language:English
Published: eLife Sciences Publications Ltd 2017-02-01
Series:eLife
Subjects:
Online Access:https://elifesciences.org/articles/24733
Description
Summary:Voltage- and calcium-dependent BK channels regulate calcium-dependent cellular events such as neurotransmitter release by limiting calcium influx. Their plasma membrane abundance is an important factor in determining BK current and thus regulation of calcium-dependent events. In C. elegans, we show that ERG-28, an endoplasmic reticulum (ER) membrane protein, promotes the trafficking of SLO-1 BK channels from the ER to the plasma membrane by shielding them from premature degradation. In the absence of ERG-28, SLO-1 channels undergo aspartic protease DDI-1-dependent degradation, resulting in markedly reduced expression at presynaptic terminals. Loss of erg-28 suppressed phenotypic defects of slo-1 gain-of-function mutants in locomotion, neurotransmitter release, and calcium-mediated asymmetric differentiation of the AWC olfactory neuron pair, and conferred significant ethanol-resistant locomotory behavior, resembling slo-1 loss-of-function mutants, albeit to a lesser extent. Our study thus indicates that the control of BK channel trafficking is a critical regulatory mechanism for synaptic transmission and neural function.
ISSN:2050-084X