A Sol-Gel/Solvothermal Synthetic Approach to Titania Nanoparticles for Raman Thermometry
The accurate determination of the local temperature is one of the most important challenges in the field of nanotechnology and nanomedicine. For this purpose, different techniques and materials have been extensively studied in order to identify both the best-performing materials and the techniques w...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-02-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/23/5/2596 |
_version_ | 1797614368735625216 |
---|---|
author | Thomas Pretto Marina Franca Veronica Zani Silvia Gross Danilo Pedron Roberto Pilot Raffaella Signorini |
author_facet | Thomas Pretto Marina Franca Veronica Zani Silvia Gross Danilo Pedron Roberto Pilot Raffaella Signorini |
author_sort | Thomas Pretto |
collection | DOAJ |
description | The accurate determination of the local temperature is one of the most important challenges in the field of nanotechnology and nanomedicine. For this purpose, different techniques and materials have been extensively studied in order to identify both the best-performing materials and the techniques with greatest sensitivity. In this study, the Raman technique was exploited for the determination of the local temperature as a non-contact technique and titania nanoparticles (NPs) were tested as nanothermometer Raman active material. Biocompatible titania NPs were synthesized following a combination of sol-gel and solvothermal green synthesis approaches, with the aim of obtaining pure anatase samples. In particular, the optimization of three different synthesis protocols allowed materials to be obtained with well-defined crystallite dimensions and good control over the final morphology and dispersibility. TiO<sub>2</sub> powders were characterized by X-ray diffraction (XRD) analyses and room-temperature Raman measurements, to confirm that the synthesized samples were single-phase anatase titania, and using SEM measurements, which clearly showed the nanometric dimension of the NPs. Stokes and anti-Stokes Raman measurements were collected, with the excitation laser at 514.5 nm (CW Ar/Kr ion laser), in the temperature range of 293–323 K, a range of interest for biological applications. The power of the laser was carefully chosen in order to avoid possible heating due to the laser irradiation. The data support the possibility of evaluating the local temperature and show that TiO<sub>2</sub> NPs possess high sensitivity and low uncertainty in the range of a few degrees as a Raman nanothermometer material. |
first_indexed | 2024-03-11T07:10:26Z |
format | Article |
id | doaj.art-6cad3c24beb84ff3ac804bd6c093ad7b |
institution | Directory Open Access Journal |
issn | 1424-8220 |
language | English |
last_indexed | 2024-03-11T07:10:26Z |
publishDate | 2023-02-01 |
publisher | MDPI AG |
record_format | Article |
series | Sensors |
spelling | doaj.art-6cad3c24beb84ff3ac804bd6c093ad7b2023-11-17T08:37:00ZengMDPI AGSensors1424-82202023-02-01235259610.3390/s23052596A Sol-Gel/Solvothermal Synthetic Approach to Titania Nanoparticles for Raman ThermometryThomas Pretto0Marina Franca1Veronica Zani2Silvia Gross3Danilo Pedron4Roberto Pilot5Raffaella Signorini6Department of Chemical Science, University of Padova, Via Marzolo 1, I-35131 Padova, ItalyDepartment of Chemical Science, University of Padova, Via Marzolo 1, I-35131 Padova, ItalyDepartment of Chemical Science, University of Padova, Via Marzolo 1, I-35131 Padova, ItalyDepartment of Chemical Science, University of Padova, Via Marzolo 1, I-35131 Padova, ItalyDepartment of Chemical Science, University of Padova, Via Marzolo 1, I-35131 Padova, ItalyDepartment of Chemical Science, University of Padova, Via Marzolo 1, I-35131 Padova, ItalyDepartment of Chemical Science, University of Padova, Via Marzolo 1, I-35131 Padova, ItalyThe accurate determination of the local temperature is one of the most important challenges in the field of nanotechnology and nanomedicine. For this purpose, different techniques and materials have been extensively studied in order to identify both the best-performing materials and the techniques with greatest sensitivity. In this study, the Raman technique was exploited for the determination of the local temperature as a non-contact technique and titania nanoparticles (NPs) were tested as nanothermometer Raman active material. Biocompatible titania NPs were synthesized following a combination of sol-gel and solvothermal green synthesis approaches, with the aim of obtaining pure anatase samples. In particular, the optimization of three different synthesis protocols allowed materials to be obtained with well-defined crystallite dimensions and good control over the final morphology and dispersibility. TiO<sub>2</sub> powders were characterized by X-ray diffraction (XRD) analyses and room-temperature Raman measurements, to confirm that the synthesized samples were single-phase anatase titania, and using SEM measurements, which clearly showed the nanometric dimension of the NPs. Stokes and anti-Stokes Raman measurements were collected, with the excitation laser at 514.5 nm (CW Ar/Kr ion laser), in the temperature range of 293–323 K, a range of interest for biological applications. The power of the laser was carefully chosen in order to avoid possible heating due to the laser irradiation. The data support the possibility of evaluating the local temperature and show that TiO<sub>2</sub> NPs possess high sensitivity and low uncertainty in the range of a few degrees as a Raman nanothermometer material.https://www.mdpi.com/1424-8220/23/5/2596temperaturenanothermometerRamannon-contact techniqueanatasenanoparticles |
spellingShingle | Thomas Pretto Marina Franca Veronica Zani Silvia Gross Danilo Pedron Roberto Pilot Raffaella Signorini A Sol-Gel/Solvothermal Synthetic Approach to Titania Nanoparticles for Raman Thermometry Sensors temperature nanothermometer Raman non-contact technique anatase nanoparticles |
title | A Sol-Gel/Solvothermal Synthetic Approach to Titania Nanoparticles for Raman Thermometry |
title_full | A Sol-Gel/Solvothermal Synthetic Approach to Titania Nanoparticles for Raman Thermometry |
title_fullStr | A Sol-Gel/Solvothermal Synthetic Approach to Titania Nanoparticles for Raman Thermometry |
title_full_unstemmed | A Sol-Gel/Solvothermal Synthetic Approach to Titania Nanoparticles for Raman Thermometry |
title_short | A Sol-Gel/Solvothermal Synthetic Approach to Titania Nanoparticles for Raman Thermometry |
title_sort | sol gel solvothermal synthetic approach to titania nanoparticles for raman thermometry |
topic | temperature nanothermometer Raman non-contact technique anatase nanoparticles |
url | https://www.mdpi.com/1424-8220/23/5/2596 |
work_keys_str_mv | AT thomaspretto asolgelsolvothermalsyntheticapproachtotitaniananoparticlesforramanthermometry AT marinafranca asolgelsolvothermalsyntheticapproachtotitaniananoparticlesforramanthermometry AT veronicazani asolgelsolvothermalsyntheticapproachtotitaniananoparticlesforramanthermometry AT silviagross asolgelsolvothermalsyntheticapproachtotitaniananoparticlesforramanthermometry AT danilopedron asolgelsolvothermalsyntheticapproachtotitaniananoparticlesforramanthermometry AT robertopilot asolgelsolvothermalsyntheticapproachtotitaniananoparticlesforramanthermometry AT raffaellasignorini asolgelsolvothermalsyntheticapproachtotitaniananoparticlesforramanthermometry AT thomaspretto solgelsolvothermalsyntheticapproachtotitaniananoparticlesforramanthermometry AT marinafranca solgelsolvothermalsyntheticapproachtotitaniananoparticlesforramanthermometry AT veronicazani solgelsolvothermalsyntheticapproachtotitaniananoparticlesforramanthermometry AT silviagross solgelsolvothermalsyntheticapproachtotitaniananoparticlesforramanthermometry AT danilopedron solgelsolvothermalsyntheticapproachtotitaniananoparticlesforramanthermometry AT robertopilot solgelsolvothermalsyntheticapproachtotitaniananoparticlesforramanthermometry AT raffaellasignorini solgelsolvothermalsyntheticapproachtotitaniananoparticlesforramanthermometry |