STM study of oligo(phenylene-ethynylene)s

A detailed scanning tunneling microscopy (STM) study of two variants of oligo(phenylene ethynylene) (OPE) molecules is presented. These molecules might serve as molecular wires up to ≈ 5 nm in length. Self-assembled arrangements as well as single molecules on a Au(111) surface were analyzed. The mol...

Full description

Bibliographic Details
Main Authors: Cornelius Thiele, Lukas Gerhard, Thomas R Eaton, David Muñoz Torres, Marcel Mayor, Wulf Wulfhekel, Hilbert v Löhneysen, Maya Lukas
Format: Article
Language:English
Published: IOP Publishing 2015-01-01
Series:New Journal of Physics
Subjects:
Online Access:https://doi.org/10.1088/1367-2630/17/5/053043
Description
Summary:A detailed scanning tunneling microscopy (STM) study of two variants of oligo(phenylene ethynylene) (OPE) molecules is presented. These molecules might serve as molecular wires up to ≈ 5 nm in length. Self-assembled arrangements as well as single molecules on a Au(111) surface were analyzed. The molecular orbitals were directly imaged and are compared to density functional theory calculations. Sub-molecular resolution images of both molecules directly display the chemical structure. One of the OPE variants was lifted off the surface by the STM tip to measure the single-molecule conductance in order to explain previously reported low conduction values. Furthermore, we present a detailed analysis of a tip-induced conformational switching of the hexyl side groups from all-trans to a nonlinear conformation, which was observed for both variants.
ISSN:1367-2630