An Evaluation of the Performance of a Ground-to-Air Heat Exchanger in Different Ventilation Scenarios in a Single-Family Home in a Climate Characterized by Cold Winters and Hot Summers

In the present study, the real-world performance of a ground-to-air heat exchanger (GAHE) was analyzed in the Polish climate which is characterized by warm summers and cold winters. The heat exchanger’s performance was monitored over a period of three years (2017 to 2019), and real-world conditions...

Full description

Bibliographic Details
Main Author: Aldona Skotnicka-Siepsiak
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/15/1/105
Description
Summary:In the present study, the real-world performance of a ground-to-air heat exchanger (GAHE) was analyzed in the Polish climate which is characterized by warm summers and cold winters. The heat exchanger’s performance was monitored over a period of three years (2017 to 2019), and real-world conditions were compared with a Typical Meteorological Year (TMY). The aim of the study was to assess the exchanger’s energy-efficiency potential in various ventilation scenarios in a single-family home under variable real-world conditions, rather than to simply determine its heating and cooling capacity. The analyzed single-family home was a modern, single-story building with a usable floor area of 115 m<sup>2</sup>. The building’s thermal insulation and airtightness met stringent energy-efficiency standards. Energy consumption in a building equipped with a natural ventilation system was compared with three other scenarios: ventilation coupled with a GAHE, mechanical ventilation with heat recovery and a high-efficiency heat exchanger (HE), and mechanical ventilation with heat recovery coupled with a GAHE. Sensible heating and cooling loads were calculated based on standard ISO 13790:2008, and latent heating and cooling loads were also included in the energy balance. During the year, the GAHE generated around 257.6 W of heating energy per hour and 124.7 W of cooling energy per hour. Presented results can be used to select the optimal HVAC system scenarios for engineering projects as well as private investors.
ISSN:1996-1073