DCMIP2016: a review of non-hydrostatic dynamical core design and intercomparison of participating models

Atmospheric dynamical cores are a fundamental component of global atmospheric modeling systems and are responsible for capturing the dynamical behavior of the Earth's atmosphere via numerical integration of the Navier–Stokes equations. These systems have existed in one form or another for ov...

Full description

Bibliographic Details
Main Authors: P. A. Ullrich, C. Jablonowski, J. Kent, P. H. Lauritzen, R. Nair, K. A. Reed, C. M. Zarzycki, D. M. Hall, D. Dazlich, R. Heikes, C. Konor, D. Randall, T. Dubos, Y. Meurdesoif, X. Chen, L. Harris, C. Kühnlein, V. Lee, A. Qaddouri, C. Girard, M. Giorgetta, D. Reinert, J. Klemp, S.-H. Park, W. Skamarock, H. Miura, T. Ohno, R. Yoshida, R. Walko, A. Reinecke, K. Viner
Format: Article
Language:English
Published: Copernicus Publications 2017-12-01
Series:Geoscientific Model Development
Online Access:https://www.geosci-model-dev.net/10/4477/2017/gmd-10-4477-2017.pdf
_version_ 1828824465562140672
author P. A. Ullrich
C. Jablonowski
J. Kent
P. H. Lauritzen
R. Nair
K. A. Reed
C. M. Zarzycki
D. M. Hall
D. Dazlich
R. Heikes
C. Konor
D. Randall
T. Dubos
Y. Meurdesoif
X. Chen
L. Harris
C. Kühnlein
V. Lee
A. Qaddouri
C. Girard
M. Giorgetta
D. Reinert
J. Klemp
S.-H. Park
W. Skamarock
H. Miura
T. Ohno
R. Yoshida
R. Walko
A. Reinecke
K. Viner
author_facet P. A. Ullrich
C. Jablonowski
J. Kent
P. H. Lauritzen
R. Nair
K. A. Reed
C. M. Zarzycki
D. M. Hall
D. Dazlich
R. Heikes
C. Konor
D. Randall
T. Dubos
Y. Meurdesoif
X. Chen
L. Harris
C. Kühnlein
V. Lee
A. Qaddouri
C. Girard
M. Giorgetta
D. Reinert
J. Klemp
S.-H. Park
W. Skamarock
H. Miura
T. Ohno
R. Yoshida
R. Walko
A. Reinecke
K. Viner
author_sort P. A. Ullrich
collection DOAJ
description Atmospheric dynamical cores are a fundamental component of global atmospheric modeling systems and are responsible for capturing the dynamical behavior of the Earth's atmosphere via numerical integration of the Navier–Stokes equations. These systems have existed in one form or another for over half of a century, with the earliest discretizations having now evolved into a complex ecosystem of algorithms and computational strategies. In essence, no two dynamical cores are alike, and their individual successes suggest that no perfect model exists. To better understand modern dynamical cores, this paper aims to provide a comprehensive review of 11 non-hydrostatic dynamical cores, drawn from modeling centers and groups that participated in the 2016 Dynamical Core Model Intercomparison Project (DCMIP) workshop and summer school. This review includes a choice of model grid, variable placement, vertical coordinate, prognostic equations, temporal discretization, and the diffusion, stabilization, filters, and fixers employed by each system.
first_indexed 2024-12-12T13:56:38Z
format Article
id doaj.art-6cbb11c760cf4f6392aed2497c365100
institution Directory Open Access Journal
issn 1991-959X
1991-9603
language English
last_indexed 2024-12-12T13:56:38Z
publishDate 2017-12-01
publisher Copernicus Publications
record_format Article
series Geoscientific Model Development
spelling doaj.art-6cbb11c760cf4f6392aed2497c3651002022-12-22T00:22:27ZengCopernicus PublicationsGeoscientific Model Development1991-959X1991-96032017-12-01104477450910.5194/gmd-10-4477-2017DCMIP2016: a review of non-hydrostatic dynamical core design and intercomparison of participating modelsP. A. Ullrich0C. Jablonowski1J. Kent2P. H. Lauritzen3R. Nair4K. A. Reed5C. M. Zarzycki6D. M. Hall7D. Dazlich8R. Heikes9C. Konor10D. Randall11T. Dubos12Y. Meurdesoif13X. Chen14L. Harris15C. Kühnlein16V. Lee17A. Qaddouri18C. Girard19M. Giorgetta20D. Reinert21J. Klemp22S.-H. Park23W. Skamarock24H. Miura25T. Ohno26R. Yoshida27R. Walko28A. Reinecke29K. Viner30University of California, Davis, Davis, CA, USAUniversity of Michigan, Ann Arbor, MI, USAUniversity of South Wales, Pontypridd, Wales, UKNational Center for Atmospheric Research, Boulder, CO, USANational Center for Atmospheric Research, Boulder, CO, USAStony Brook University, Stony Brook, NY, USANational Center for Atmospheric Research, Boulder, CO, USAUniversity of Colorado, Boulder, Boulder, CO, USAColorado State University, Fort Collins, CO, USAColorado State University, Fort Collins, CO, USAColorado State University, Fort Collins, CO, USAColorado State University, Fort Collins, CO, USALaboratoire de Météorologie Dynamique, Institut Pierre-Simon Laplace (IPSL), Paris, FranceLaboratoire de Météorologie Dynamique, Institut Pierre-Simon Laplace (IPSL), Paris, FranceGeophysical Fluid Dynamics Laboratory (GFDL), Princeton, NJ, USAGeophysical Fluid Dynamics Laboratory (GFDL), Princeton, NJ, USAEuropean Center for Medium-Range Weather Forecasting (ECMWF), Reading, UKEnvironment and Climate Change Canada (ECCC), Dorval, Québec, CanadaEnvironment and Climate Change Canada (ECCC), Dorval, Québec, CanadaEnvironment and Climate Change Canada (ECCC), Dorval, Québec, CanadaMax Planck Institute for Meteorology, Hamburg, GermanyDeutscher Wetterdienst (DWD), Offenbach am Main, GermanyNational Center for Atmospheric Research, Boulder, CO, USAYonsei University, Seoul, South KoreaNational Center for Atmospheric Research, Boulder, CO, USAUniversity of Tokyo, Bunkyo, Tokyo, JapanJapan Agency for Marine-Earth Science and Technology, Yokohama, Kanagawa, JapanRIKEN AICS/Kobe University, Kobe, JapanUniversity of Miami, Coral Gables, FL, USANaval Research Laboratory, Monterey, CA, USANaval Research Laboratory, Monterey, CA, USAAtmospheric dynamical cores are a fundamental component of global atmospheric modeling systems and are responsible for capturing the dynamical behavior of the Earth's atmosphere via numerical integration of the Navier–Stokes equations. These systems have existed in one form or another for over half of a century, with the earliest discretizations having now evolved into a complex ecosystem of algorithms and computational strategies. In essence, no two dynamical cores are alike, and their individual successes suggest that no perfect model exists. To better understand modern dynamical cores, this paper aims to provide a comprehensive review of 11 non-hydrostatic dynamical cores, drawn from modeling centers and groups that participated in the 2016 Dynamical Core Model Intercomparison Project (DCMIP) workshop and summer school. This review includes a choice of model grid, variable placement, vertical coordinate, prognostic equations, temporal discretization, and the diffusion, stabilization, filters, and fixers employed by each system.https://www.geosci-model-dev.net/10/4477/2017/gmd-10-4477-2017.pdf
spellingShingle P. A. Ullrich
C. Jablonowski
J. Kent
P. H. Lauritzen
R. Nair
K. A. Reed
C. M. Zarzycki
D. M. Hall
D. Dazlich
R. Heikes
C. Konor
D. Randall
T. Dubos
Y. Meurdesoif
X. Chen
L. Harris
C. Kühnlein
V. Lee
A. Qaddouri
C. Girard
M. Giorgetta
D. Reinert
J. Klemp
S.-H. Park
W. Skamarock
H. Miura
T. Ohno
R. Yoshida
R. Walko
A. Reinecke
K. Viner
DCMIP2016: a review of non-hydrostatic dynamical core design and intercomparison of participating models
Geoscientific Model Development
title DCMIP2016: a review of non-hydrostatic dynamical core design and intercomparison of participating models
title_full DCMIP2016: a review of non-hydrostatic dynamical core design and intercomparison of participating models
title_fullStr DCMIP2016: a review of non-hydrostatic dynamical core design and intercomparison of participating models
title_full_unstemmed DCMIP2016: a review of non-hydrostatic dynamical core design and intercomparison of participating models
title_short DCMIP2016: a review of non-hydrostatic dynamical core design and intercomparison of participating models
title_sort dcmip2016 a review of non hydrostatic dynamical core design and intercomparison of participating models
url https://www.geosci-model-dev.net/10/4477/2017/gmd-10-4477-2017.pdf
work_keys_str_mv AT paullrich dcmip2016areviewofnonhydrostaticdynamicalcoredesignandintercomparisonofparticipatingmodels
AT cjablonowski dcmip2016areviewofnonhydrostaticdynamicalcoredesignandintercomparisonofparticipatingmodels
AT jkent dcmip2016areviewofnonhydrostaticdynamicalcoredesignandintercomparisonofparticipatingmodels
AT phlauritzen dcmip2016areviewofnonhydrostaticdynamicalcoredesignandintercomparisonofparticipatingmodels
AT rnair dcmip2016areviewofnonhydrostaticdynamicalcoredesignandintercomparisonofparticipatingmodels
AT kareed dcmip2016areviewofnonhydrostaticdynamicalcoredesignandintercomparisonofparticipatingmodels
AT cmzarzycki dcmip2016areviewofnonhydrostaticdynamicalcoredesignandintercomparisonofparticipatingmodels
AT dmhall dcmip2016areviewofnonhydrostaticdynamicalcoredesignandintercomparisonofparticipatingmodels
AT ddazlich dcmip2016areviewofnonhydrostaticdynamicalcoredesignandintercomparisonofparticipatingmodels
AT rheikes dcmip2016areviewofnonhydrostaticdynamicalcoredesignandintercomparisonofparticipatingmodels
AT ckonor dcmip2016areviewofnonhydrostaticdynamicalcoredesignandintercomparisonofparticipatingmodels
AT drandall dcmip2016areviewofnonhydrostaticdynamicalcoredesignandintercomparisonofparticipatingmodels
AT tdubos dcmip2016areviewofnonhydrostaticdynamicalcoredesignandintercomparisonofparticipatingmodels
AT ymeurdesoif dcmip2016areviewofnonhydrostaticdynamicalcoredesignandintercomparisonofparticipatingmodels
AT xchen dcmip2016areviewofnonhydrostaticdynamicalcoredesignandintercomparisonofparticipatingmodels
AT lharris dcmip2016areviewofnonhydrostaticdynamicalcoredesignandintercomparisonofparticipatingmodels
AT ckuhnlein dcmip2016areviewofnonhydrostaticdynamicalcoredesignandintercomparisonofparticipatingmodels
AT vlee dcmip2016areviewofnonhydrostaticdynamicalcoredesignandintercomparisonofparticipatingmodels
AT aqaddouri dcmip2016areviewofnonhydrostaticdynamicalcoredesignandintercomparisonofparticipatingmodels
AT cgirard dcmip2016areviewofnonhydrostaticdynamicalcoredesignandintercomparisonofparticipatingmodels
AT mgiorgetta dcmip2016areviewofnonhydrostaticdynamicalcoredesignandintercomparisonofparticipatingmodels
AT dreinert dcmip2016areviewofnonhydrostaticdynamicalcoredesignandintercomparisonofparticipatingmodels
AT jklemp dcmip2016areviewofnonhydrostaticdynamicalcoredesignandintercomparisonofparticipatingmodels
AT shpark dcmip2016areviewofnonhydrostaticdynamicalcoredesignandintercomparisonofparticipatingmodels
AT wskamarock dcmip2016areviewofnonhydrostaticdynamicalcoredesignandintercomparisonofparticipatingmodels
AT hmiura dcmip2016areviewofnonhydrostaticdynamicalcoredesignandintercomparisonofparticipatingmodels
AT tohno dcmip2016areviewofnonhydrostaticdynamicalcoredesignandintercomparisonofparticipatingmodels
AT ryoshida dcmip2016areviewofnonhydrostaticdynamicalcoredesignandintercomparisonofparticipatingmodels
AT rwalko dcmip2016areviewofnonhydrostaticdynamicalcoredesignandintercomparisonofparticipatingmodels
AT areinecke dcmip2016areviewofnonhydrostaticdynamicalcoredesignandintercomparisonofparticipatingmodels
AT kviner dcmip2016areviewofnonhydrostaticdynamicalcoredesignandintercomparisonofparticipatingmodels