Statistical Characteristics and Composite Environmental Conditions of Explosive Cyclones over the Japan Sea and Kuroshio/Kuroshio Extension

Statistical characteristics and composite synoptic-scale environmental conditions of explosive cyclones (ECs) over the Japan Sea and Kuroshio/Kuroshio Extension are examined and compared using ERA5 atmospheric reanalysis to give a better understanding of their differences. ECs over the Japan Sea fre...

Full description

Bibliographic Details
Main Authors: Shuqin Zhang, Gang Fu, Yu Zhang, Jianjun Xu, Yufeng Xue, Ruoying Tang, Xiaoyu Gao, Chunlei Liu, Jingchao Long
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Atmosphere
Subjects:
Online Access:https://www.mdpi.com/2073-4433/13/1/17
Description
Summary:Statistical characteristics and composite synoptic-scale environmental conditions of explosive cyclones (ECs) over the Japan Sea and Kuroshio/Kuroshio Extension are examined and compared using ERA5 atmospheric reanalysis to give a better understanding of their differences. ECs over the Japan Sea frequently occur in late autumn and early winter and those over the Kuroshio/Kuroshio Extension mainly occur in winter and early spring. The maximum deepening rate, minimum central sea level pressure and explosive-developing lifetime of ECs over the Kuroshio/Kuroshio Extension are generally larger, lower and longer, respectively, than those over the Japan Sea. ECs over the Kuroshio/Kuroshio Extension formed over the East China Sea tend to develop more rapidly, and weak and moderate ECs generally begin to develop explosively over the sea to the east of the Japan Islands, while the strong and super ECs over the sea to the south of Japan Islands have longer explosive-developing tracks. Composite analysis shows that synoptic-scale environmental conditions favoring rapid EC development over these two regions are significantly different. ECs over the Japan Sea have stronger baroclinicity and cyclonic vorticity, but weaker water vapor convergence and upper-level jet stream than those over the Kuroshio/Kuroshio Extension. The key factor contributing to the baroclinicity is the cold air intrusion over the Japan Sea and the strong warm current heating over the Kuroshio/Kuroshio Extension. The potential vorticity shows anomalies in upper and low levels for both EC areas and extends further downwards over the Japan Sea.
ISSN:2073-4433