Evaluating the association between DNM1L variants and Parkinson's disease in the Chinese population

IntroductionParkinson's disease (PD) is a progressive movement disorder caused by a loss of dopaminergic neurons. Previous studies have highlighted the importance of mitochondria dynamics in the pathogenesis of PD. Dynamin-1-like (DNM1L) is a gene that encodes dynamin-related protein 1 (DRP1),...

Full description

Bibliographic Details
Main Authors: Jiabin Liu, Juanjuan Huang, Yuwen Zhao, Hongxu Pan, Yige Wang, Zhenhua Liu, Qian Xu, Qiying Sun, Jieqiong Tan, Xinxiang Yan, Jinchen Li, Beisha Tang, Jifeng Guo
Format: Article
Language:English
Published: Frontiers Media S.A. 2023-02-01
Series:Frontiers in Neurology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fneur.2023.1133449/full
Description
Summary:IntroductionParkinson's disease (PD) is a progressive movement disorder caused by a loss of dopaminergic neurons. Previous studies have highlighted the importance of mitochondria dynamics in the pathogenesis of PD. Dynamin-1-like (DNM1L) is a gene that encodes dynamin-related protein 1 (DRP1), a GTPase essential for proper mitochondria fission. In the present study, we evaluated the relationship between DNM1L variants and PD in the Chinese population.MethodsA total of 3,879 patients with PD and 2,931 healthy controls were recruited and burden genetic analysis combined with high-throughput sequencing was applied.ResultsWe identified 23 rare variants in the coding region of DNM1L, while no difference in variant burden was shown between the cases and controls. We also identified 201 common variants in the coding and flanking regions and found two significant SNPs, namely, rs10844308 and rs143794289 [odds ratio (OR) = 1.220 and 0.718, p = 0.025 and 0.036, respectively]. We also performed a meta-analysis to correlate the two SNPs with PD risk. However, none of the common variants was significant using logistic regression.ConclusionDespite the critical role of DRP1, our study did not support the relationship between DNM1L variants and PD risk in the Chinese population.
ISSN:1664-2295