Holographic complexity for defects distinguishes action from volume

Abstract We explore the two holographic complexity proposals for the case of a 2d boundary CFT with a conformal defect. We focus on a Randall-Sundrum type model of a thin AdS2 brane embedded in AdS3. We find that, using the “complexity=volume” proposal, the presence of the defect generates a logarit...

Full description

Bibliographic Details
Main Authors: Shira Chapman, Dongsheng Ge, Giuseppe Policastro
Format: Article
Language:English
Published: SpringerOpen 2019-05-01
Series:Journal of High Energy Physics
Subjects:
Online Access:http://link.springer.com/article/10.1007/JHEP05(2019)049
Description
Summary:Abstract We explore the two holographic complexity proposals for the case of a 2d boundary CFT with a conformal defect. We focus on a Randall-Sundrum type model of a thin AdS2 brane embedded in AdS3. We find that, using the “complexity=volume” proposal, the presence of the defect generates a logarithmic divergence in the complexity of the full boundary state with a coefficient which is related to the central charge and to the boundary entropy. For the “complexity=action” proposal we find that the logarithmically divergent term in the complexity is not influenced by the presence of the defect. This is the first case in which the results of the two holographic proposals differ so dramatically. We consider also the complexity of the reduced density matrix for subregions enclosing the defect. We explore two bosonic field theory models which include two defects on opposite sides of a periodic domain. We point out that for a compact boson, current free field theory definitions of the complexity would have to be generalized to account for the effect of zero-modes.
ISSN:1029-8479