Q-Learnheuristics: Towards Data-Driven Balanced Metaheuristics

One of the central issues that must be resolved for a metaheuristic optimization process to work well is the dilemma of the balance between exploration and exploitation. The metaheuristics (MH) that achieved this balance can be called balanced MH, where a Q-Learning (QL) integration framework was pr...

Full description

Bibliographic Details
Main Authors: Broderick Crawford, Ricardo Soto, José Lemus-Romani, Marcelo Becerra-Rozas, José M. Lanza-Gutiérrez, Nuria Caballé, Mauricio Castillo, Diego Tapia, Felipe Cisternas-Caneo, José García, Gino Astorga, Carlos Castro, José-Miguel Rubio
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/16/1839
_version_ 1797523060695236608
author Broderick Crawford
Ricardo Soto
José Lemus-Romani
Marcelo Becerra-Rozas
José M. Lanza-Gutiérrez
Nuria Caballé
Mauricio Castillo
Diego Tapia
Felipe Cisternas-Caneo
José García
Gino Astorga
Carlos Castro
José-Miguel Rubio
author_facet Broderick Crawford
Ricardo Soto
José Lemus-Romani
Marcelo Becerra-Rozas
José M. Lanza-Gutiérrez
Nuria Caballé
Mauricio Castillo
Diego Tapia
Felipe Cisternas-Caneo
José García
Gino Astorga
Carlos Castro
José-Miguel Rubio
author_sort Broderick Crawford
collection DOAJ
description One of the central issues that must be resolved for a metaheuristic optimization process to work well is the dilemma of the balance between exploration and exploitation. The metaheuristics (MH) that achieved this balance can be called balanced MH, where a Q-Learning (QL) integration framework was proposed for the selection of metaheuristic operators conducive to this balance, particularly the selection of binarization schemes when a continuous metaheuristic solves binary combinatorial problems. In this work the use of this framework is extended to other recent metaheuristics, demonstrating that the integration of QL in the selection of operators improves the exploration-exploitation balance. Specifically, the Whale Optimization Algorithm and the Sine-Cosine Algorithm are tested by solving the Set Covering Problem, showing statistical improvements in this balance and in the quality of the solutions.
first_indexed 2024-03-10T08:38:05Z
format Article
id doaj.art-6ce944acc1a842a38ea87a47e5843025
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T08:38:05Z
publishDate 2021-08-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-6ce944acc1a842a38ea87a47e58430252023-11-22T08:32:42ZengMDPI AGMathematics2227-73902021-08-01916183910.3390/math9161839Q-Learnheuristics: Towards Data-Driven Balanced MetaheuristicsBroderick Crawford0Ricardo Soto1José Lemus-Romani2Marcelo Becerra-Rozas3José M. Lanza-Gutiérrez4Nuria Caballé5Mauricio Castillo6Diego Tapia7Felipe Cisternas-Caneo8José García9Gino Astorga10Carlos Castro11José-Miguel Rubio12Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, ChileEscuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, ChileEscuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, ChileEscuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, ChileDepartamento de Ciencias de la Computación, Escuela Politécnica Superior, Universidad de Alcalá, 28805 Alcalá de Henares, SpainDepartamento de Física y Matemáticas, Facultad de Ciencias, Universidad de Alcalá, 28802 Alcalá de Henares, SpainEscuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, ChileEscuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, ChileEscuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, ChileEscuela de Ingeniería en Construcción, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2147, Valparaíso 2362804, ChileEscuela de Negocios Internacionales, Universidad de Valparaíso, Alcalde Prieto Nieto 452, Viña del Mar 2572048, ChileDepartamento de Informática, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, ChileEscuela de Computación e Informática, Universidad Bernardo O’Higgins, Av. Viel 1497, Santiago 8370993, ChileOne of the central issues that must be resolved for a metaheuristic optimization process to work well is the dilemma of the balance between exploration and exploitation. The metaheuristics (MH) that achieved this balance can be called balanced MH, where a Q-Learning (QL) integration framework was proposed for the selection of metaheuristic operators conducive to this balance, particularly the selection of binarization schemes when a continuous metaheuristic solves binary combinatorial problems. In this work the use of this framework is extended to other recent metaheuristics, demonstrating that the integration of QL in the selection of operators improves the exploration-exploitation balance. Specifically, the Whale Optimization Algorithm and the Sine-Cosine Algorithm are tested by solving the Set Covering Problem, showing statistical improvements in this balance and in the quality of the solutions.https://www.mdpi.com/2227-7390/9/16/1839metaheuristicsbalanced metaheuristicsQ-LearningWhale Optimization AlgorithmSine-Cosine Algorithm
spellingShingle Broderick Crawford
Ricardo Soto
José Lemus-Romani
Marcelo Becerra-Rozas
José M. Lanza-Gutiérrez
Nuria Caballé
Mauricio Castillo
Diego Tapia
Felipe Cisternas-Caneo
José García
Gino Astorga
Carlos Castro
José-Miguel Rubio
Q-Learnheuristics: Towards Data-Driven Balanced Metaheuristics
Mathematics
metaheuristics
balanced metaheuristics
Q-Learning
Whale Optimization Algorithm
Sine-Cosine Algorithm
title Q-Learnheuristics: Towards Data-Driven Balanced Metaheuristics
title_full Q-Learnheuristics: Towards Data-Driven Balanced Metaheuristics
title_fullStr Q-Learnheuristics: Towards Data-Driven Balanced Metaheuristics
title_full_unstemmed Q-Learnheuristics: Towards Data-Driven Balanced Metaheuristics
title_short Q-Learnheuristics: Towards Data-Driven Balanced Metaheuristics
title_sort q learnheuristics towards data driven balanced metaheuristics
topic metaheuristics
balanced metaheuristics
Q-Learning
Whale Optimization Algorithm
Sine-Cosine Algorithm
url https://www.mdpi.com/2227-7390/9/16/1839
work_keys_str_mv AT broderickcrawford qlearnheuristicstowardsdatadrivenbalancedmetaheuristics
AT ricardosoto qlearnheuristicstowardsdatadrivenbalancedmetaheuristics
AT joselemusromani qlearnheuristicstowardsdatadrivenbalancedmetaheuristics
AT marcelobecerrarozas qlearnheuristicstowardsdatadrivenbalancedmetaheuristics
AT josemlanzagutierrez qlearnheuristicstowardsdatadrivenbalancedmetaheuristics
AT nuriacaballe qlearnheuristicstowardsdatadrivenbalancedmetaheuristics
AT mauriciocastillo qlearnheuristicstowardsdatadrivenbalancedmetaheuristics
AT diegotapia qlearnheuristicstowardsdatadrivenbalancedmetaheuristics
AT felipecisternascaneo qlearnheuristicstowardsdatadrivenbalancedmetaheuristics
AT josegarcia qlearnheuristicstowardsdatadrivenbalancedmetaheuristics
AT ginoastorga qlearnheuristicstowardsdatadrivenbalancedmetaheuristics
AT carloscastro qlearnheuristicstowardsdatadrivenbalancedmetaheuristics
AT josemiguelrubio qlearnheuristicstowardsdatadrivenbalancedmetaheuristics