On the radially symmetric solutions of a BVP for a class of nonlinear elliptic partial differential equations
Uniqueness and comparison theorems are proved for the BVP of the form $$\Delta u(x)+g(x,u(x),\ |\nabla u(x)|)=0,\quad x\in B, u|_\Gamma=a\in {\mathbb{R}}\ (\Gamma:=\partial B),$$ where $B$ is the unit ball in ${\mathbb{R}}^n$ centered at the origin $(n\ge2).$ We investigate radially symmetric solu...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2000-01-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=74 |
_version_ | 1797830782100701184 |
---|---|
author | Jenő Hegedűs |
author_facet | Jenő Hegedűs |
author_sort | Jenő Hegedűs |
collection | DOAJ |
description | Uniqueness and comparison theorems are proved for the BVP of the form
$$\Delta u(x)+g(x,u(x),\ |\nabla u(x)|)=0,\quad x\in B, u|_\Gamma=a\in {\mathbb{R}}\ (\Gamma:=\partial B),$$
where $B$ is the unit ball in ${\mathbb{R}}^n$ centered at the origin $(n\ge2).$ We investigate radially symmetric solutions, their dependence on the parameter $a\in{\mathbb{R}}$, and their concavity. |
first_indexed | 2024-04-09T13:42:40Z |
format | Article |
id | doaj.art-6cee3199c07e46c59b88fdbc8e098405 |
institution | Directory Open Access Journal |
issn | 1417-3875 |
language | English |
last_indexed | 2024-04-09T13:42:40Z |
publishDate | 2000-01-01 |
publisher | University of Szeged |
record_format | Article |
series | Electronic Journal of Qualitative Theory of Differential Equations |
spelling | doaj.art-6cee3199c07e46c59b88fdbc8e0984052023-05-09T07:52:56ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752000-01-0119991211610.14232/ejqtde.1999.5.1274On the radially symmetric solutions of a BVP for a class of nonlinear elliptic partial differential equationsJenő Hegedűs0Bolyai Institute, Szeged, HungaryUniqueness and comparison theorems are proved for the BVP of the form $$\Delta u(x)+g(x,u(x),\ |\nabla u(x)|)=0,\quad x\in B, u|_\Gamma=a\in {\mathbb{R}}\ (\Gamma:=\partial B),$$ where $B$ is the unit ball in ${\mathbb{R}}^n$ centered at the origin $(n\ge2).$ We investigate radially symmetric solutions, their dependence on the parameter $a\in{\mathbb{R}}$, and their concavity.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=74 |
spellingShingle | Jenő Hegedűs On the radially symmetric solutions of a BVP for a class of nonlinear elliptic partial differential equations Electronic Journal of Qualitative Theory of Differential Equations |
title | On the radially symmetric solutions of a BVP for a class of nonlinear elliptic partial differential equations |
title_full | On the radially symmetric solutions of a BVP for a class of nonlinear elliptic partial differential equations |
title_fullStr | On the radially symmetric solutions of a BVP for a class of nonlinear elliptic partial differential equations |
title_full_unstemmed | On the radially symmetric solutions of a BVP for a class of nonlinear elliptic partial differential equations |
title_short | On the radially symmetric solutions of a BVP for a class of nonlinear elliptic partial differential equations |
title_sort | on the radially symmetric solutions of a bvp for a class of nonlinear elliptic partial differential equations |
url | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=74 |
work_keys_str_mv | AT jenohegedus ontheradiallysymmetricsolutionsofabvpforaclassofnonlinearellipticpartialdifferentialequations |