Do mito da Geometria Euclidiana ao ensino das Geometrias Não Euclidianas

Das tentativas frustradas de provar que o quinto postulado de Euclides era um teorema, surgiram as Geometrias Não Euclidianas. Com os quatro primeiros postulados de Euclides e a negação do quinto, surgiram outras Geometrias cujos postulados são possíveis em modelos planos que são tão consistentes qu...

Full description

Bibliographic Details
Main Authors: Mylane dos Santos Barreto, Salvador Tavares
Format: Article
Language:English
Published: Essentia Editora IFFluminense 2010-05-01
Series:Vértices
Subjects:
Online Access:http://essentiaeditora.iff.edu.br/index.php/vertices/article/view/53
Description
Summary:Das tentativas frustradas de provar que o quinto postulado de Euclides era um teorema, surgiram as Geometrias Não Euclidianas. Com os quatro primeiros postulados de Euclides e a negação do quinto, surgiram outras Geometrias cujos postulados são possíveis em modelos planos que são tão consistentes quanto o da Geometria Euclidiana. Neste artigo são apresentados os modelos, postulados e conceitos da Geometria Elíptica e Geometria Hiperbólica. Além disso, é discutido o ensino dessas Geometrias.
ISSN:1415-2843
1809-2667