Attribution of extreme precipitation in the lower reaches of the Yangtze River during May 2016

May 2016 was the third wettest May on record since 1961 over central eastern China based on station observations, with total monthly rainfall 40% more than the climatological mean for 1961–2013. Accompanying disasters such as waterlogging, landslides and debris flow struck part of the lower reaches...

Full description

Bibliographic Details
Main Authors: Chunxiang Li, Qinhua Tian, Rong Yu, Baiquan Zhou, Jiangjiang Xia, Claire Burke, Buwen Dong, Simon F B Tett, Nicolas Freychet, Fraser Lott, Andrew Ciavarella
Format: Article
Language:English
Published: IOP Publishing 2018-01-01
Series:Environmental Research Letters
Subjects:
Online Access:https://doi.org/10.1088/1748-9326/aa9691
Description
Summary:May 2016 was the third wettest May on record since 1961 over central eastern China based on station observations, with total monthly rainfall 40% more than the climatological mean for 1961–2013. Accompanying disasters such as waterlogging, landslides and debris flow struck part of the lower reaches of the Yangtze River. Causal influence of anthropogenic forcings on this event is investigated using the newly updated Met Office Hadley Centre system for attribution of extreme weather and climate events. Results indicate that there is a significant increase in May 2016 rainfall in model simulations relative to the climatological period, but this increase is largely attributable to natural variability. El Niño years have been found to be correlated with extreme rainfall in the Yangtze River region in previous studies—the strong El Niño of 2015–2016 may account for the extreme precipitation event in 2016. However, on smaller spatial scales we find that anthropogenic forcing has likely played a role in increasing the risk of extreme rainfall to the north of the Yangtze and decreasing it to the south.
ISSN:1748-9326