Prostate-Specific Antigen Monitoring Using Nano Zinc(II) Metal–Organic Framework-Based Optical Biosensor

Background: The prostate-specific antigen (PSA) is an important cancer biomarker that is commonly utilized in the diagnosis of prostate cancer. The development of a PSA determination technique that is rapid, simple, and inexpensive, in addition to highly accurate, sensitive, and selective, remains a...

Full description

Bibliographic Details
Main Authors: Said M. El-Sheikh, Sheta M. Sheta, Salem R. Salem, Mohkles M. Abd-Elzaher, Amal S. Basaleh, Ammar A. Labib
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Biosensors
Subjects:
Online Access:https://www.mdpi.com/2079-6374/12/11/931
Description
Summary:Background: The prostate-specific antigen (PSA) is an important cancer biomarker that is commonly utilized in the diagnosis of prostate cancer. The development of a PSA determination technique that is rapid, simple, and inexpensive, in addition to highly accurate, sensitive, and selective, remains a formidable obstacle. Methods: In this study, we developed a practical biosensor based on Zn(II) metal–organic framework nanoparticles (Zn-MOFs-NPs). Many spectroscopic and microanalytical tools are used to determine the structure, morphology, and physicochemical properties of the prepared MOF. Results: According to the results, Zn-MOFs-NPs are sensitive to PSA, selective to an extremely greater extent, and stable in terms of chemical composition. Furthermore, the Zn-MOFs-NPs did not exhibit any interferences from other common analytes that might cause interference. The detection limit for PSA was calculated and was 0.145 fg/mL throughout a wide linear concentration range (0.1 fg/mL–20 pg/mL). Conclusions: Zn-MOFs-NPs were successfully used as a growing biosensor for the monitoring and measurement of PSA in biological real samples.
ISSN:2079-6374