Klasifikasi Motif Batik Berbasis Kemiripan Ciri dengan Wavelet Transform dan Fuzzy Neural Network

This paper introduces a classification of the image of the batik process, which is based on the similarity of the characteristics, by combining the method of wavelet transform Daubechies type 2 level 2, to process the characteristic texture consisting of standard deviation, mean and energy as input...

Full description

Bibliographic Details
Main Author: A Haris Rangkuti
Format: Article
Language:English
Published: Bina Nusantara University 2014-06-01
Series:ComTech
Subjects:
Online Access:https://journal.binus.ac.id/index.php/comtech/article/view/2630
_version_ 1797762728260009984
author A Haris Rangkuti
author_facet A Haris Rangkuti
author_sort A Haris Rangkuti
collection DOAJ
description This paper introduces a classification of the image of the batik process, which is based on the similarity of the characteristics, by combining the method of wavelet transform Daubechies type 2 level 2, to process the characteristic texture consisting of standard deviation, mean and energy as input variables, using the method of Fuzzy Neural Network (FNN). Fuzzyfikasi process will be carried out all input values with five categories: Very Low (VL), Low (L), Medium (M), High (H) and Very High (VH). The result will be a fuzzy input in the process of neural network classification methods. The result will be a fuzzy input in the process of neural network classification methods. For the image to be processed seven types of batik motif is ceplok, kawung, lereng, parang, megamendung, tambal and nitik. The results of the classification process with FNN is rule generation, so for the new image of batik can be immediately known motif types after treatment with FNN classification.  For the degree of precision of this method is 86-92%.
first_indexed 2024-03-12T19:32:33Z
format Article
id doaj.art-6d049a61612b4896a239ec6506b08c87
institution Directory Open Access Journal
issn 2087-1244
2476-907X
language English
last_indexed 2024-03-12T19:32:33Z
publishDate 2014-06-01
publisher Bina Nusantara University
record_format Article
series ComTech
spelling doaj.art-6d049a61612b4896a239ec6506b08c872023-08-02T04:26:40ZengBina Nusantara UniversityComTech2087-12442476-907X2014-06-015136137210.21512/comtech.v5i1.26302030Klasifikasi Motif Batik Berbasis Kemiripan Ciri dengan Wavelet Transform dan Fuzzy Neural NetworkA Haris Rangkuti0Bina Nusantara UniversityThis paper introduces a classification of the image of the batik process, which is based on the similarity of the characteristics, by combining the method of wavelet transform Daubechies type 2 level 2, to process the characteristic texture consisting of standard deviation, mean and energy as input variables, using the method of Fuzzy Neural Network (FNN). Fuzzyfikasi process will be carried out all input values with five categories: Very Low (VL), Low (L), Medium (M), High (H) and Very High (VH). The result will be a fuzzy input in the process of neural network classification methods. The result will be a fuzzy input in the process of neural network classification methods. For the image to be processed seven types of batik motif is ceplok, kawung, lereng, parang, megamendung, tambal and nitik. The results of the classification process with FNN is rule generation, so for the new image of batik can be immediately known motif types after treatment with FNN classification.  For the degree of precision of this method is 86-92%.https://journal.binus.ac.id/index.php/comtech/article/view/2630batik image, wavelet transform, daubechies, Fuzzy neural network, fuzzifikasi, rule generation, batik motif
spellingShingle A Haris Rangkuti
Klasifikasi Motif Batik Berbasis Kemiripan Ciri dengan Wavelet Transform dan Fuzzy Neural Network
ComTech
batik image, wavelet transform, daubechies, Fuzzy neural network, fuzzifikasi, rule generation, batik motif
title Klasifikasi Motif Batik Berbasis Kemiripan Ciri dengan Wavelet Transform dan Fuzzy Neural Network
title_full Klasifikasi Motif Batik Berbasis Kemiripan Ciri dengan Wavelet Transform dan Fuzzy Neural Network
title_fullStr Klasifikasi Motif Batik Berbasis Kemiripan Ciri dengan Wavelet Transform dan Fuzzy Neural Network
title_full_unstemmed Klasifikasi Motif Batik Berbasis Kemiripan Ciri dengan Wavelet Transform dan Fuzzy Neural Network
title_short Klasifikasi Motif Batik Berbasis Kemiripan Ciri dengan Wavelet Transform dan Fuzzy Neural Network
title_sort klasifikasi motif batik berbasis kemiripan ciri dengan wavelet transform dan fuzzy neural network
topic batik image, wavelet transform, daubechies, Fuzzy neural network, fuzzifikasi, rule generation, batik motif
url https://journal.binus.ac.id/index.php/comtech/article/view/2630
work_keys_str_mv AT aharisrangkuti klasifikasimotifbatikberbasiskemiripanciridenganwavelettransformdanfuzzyneuralnetwork