Global Behavior of an Arbitrary-Order Nonlinear Difference Equation with a Nonnegative Function

Let <inline-formula> <math display="inline"> <semantics> <mrow> <mi>k</mi> <mo>,</mo> <mi>l</mi> </mrow> </semantics> </math> </inline-formula> be two integers with <inline-formula> <math display=&...

Full description

Bibliographic Details
Main Author: Wen-Xiu Ma
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/5/825
_version_ 1797567568915988480
author Wen-Xiu Ma
author_facet Wen-Xiu Ma
author_sort Wen-Xiu Ma
collection DOAJ
description Let <inline-formula> <math display="inline"> <semantics> <mrow> <mi>k</mi> <mo>,</mo> <mi>l</mi> </mrow> </semantics> </math> </inline-formula> be two integers with <inline-formula> <math display="inline"> <semantics> <mrow> <mi>k</mi> <mo>≥</mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>l</mi> <mo>≥</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula>, <i>c</i> a real number greater than or equal to 1, and <i>f</i> a multivariable function satisfying <inline-formula> <math display="inline"> <semantics> <mrow> <mi>f</mi> <mo>(</mo> <msub> <mi>w</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>w</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>w</mi> <mn>3</mn> </msub> <mo>,</mo> <mo>⋯</mo> <mo>,</mo> <msub> <mi>w</mi> <mi>l</mi> </msub> <mo>)</mo> <mo>≥</mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula> when <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>w</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>w</mi> <mn>2</mn> </msub> <mo>≥</mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula>. We consider an arbitrary order nonlinear difference equation with the indicated function <i>f</i>: <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>z</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mi>c</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mi>n</mi> </msub> <mo>+</mo> <msub> <mi>z</mi> <mrow> <mi>n</mi> <mo>−</mo> <mi>k</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mi>c</mi> <mo>−</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>z</mi> <mi>n</mi> </msub> <msub> <mi>z</mi> <mrow> <mi>n</mi> <mo>−</mo> <mi>k</mi> </mrow> </msub> <mo>+</mo> <mi>c</mi> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mi>n</mi> </msub> <mo>,</mo> <msub> <mi>z</mi> <mrow> <mi>n</mi> <mo>−</mo> <mi>k</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>w</mi> <mn>3</mn> </msub> <mo>,</mo> <mo>⋯</mo> <mo>,</mo> <msub> <mi>w</mi> <mi>l</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>z</mi> <mi>n</mi> </msub> <msub> <mi>z</mi> <mrow> <mi>n</mi> <mo>−</mo> <mi>k</mi> </mrow> </msub> <mo>+</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mi>n</mi> </msub> <mo>,</mo> <msub> <mi>z</mi> <mrow> <mi>n</mi> <mo>−</mo> <mi>k</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>w</mi> <mn>3</mn> </msub> <mo>,</mo> <mo>⋯</mo> <mo>,</mo> <msub> <mi>w</mi> <mi>l</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>c</mi> </mrow> </mfrac> <mo>,</mo> <mspace width="4pt"></mspace> <mi>n</mi> <mo>≥</mo> <mn>0</mn> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> where initial values <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>z</mi> <mrow> <mo>−</mo> <mi>k</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>z</mi> <mrow> <mo>−</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>⋯</mo> <mo>,</mo> <msub> <mi>z</mi> <mn>0</mn> </msub> </mrow> </semantics> </math> </inline-formula> are positive and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>w</mi> <mi>i</mi> </msub> <mo>,</mo> <mspace width="4pt"></mspace> <mi>i</mi> <mo>≥</mo> <mn>3</mn> </mrow> </semantics> </math> </inline-formula>, are arbitrary functions of <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>z</mi> <mi>j</mi> </msub> <mo>,</mo> <mspace width="4pt"></mspace> <mi>n</mi> <mo>−</mo> <mi>k</mi> <mo>≤</mo> <mi>j</mi> <mo>≤</mo> <mi>n</mi> </mrow> </semantics> </math> </inline-formula>. We classify its solutions into three types with different asymptotic behaviors, and verify the global asymptotic stability of its positive equilibrium solution <inline-formula> <math display="inline"> <semantics> <mrow> <mover accent="true"> <mi>z</mi> <mo>¯</mo> </mover> <mo>=</mo> <mi>c</mi> </mrow> </semantics> </math> </inline-formula>.
first_indexed 2024-03-10T19:44:47Z
format Article
id doaj.art-6d05fcaa77a34404a44bfd9ae2c20ef8
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T19:44:47Z
publishDate 2020-05-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-6d05fcaa77a34404a44bfd9ae2c20ef82023-11-20T00:57:13ZengMDPI AGMathematics2227-73902020-05-018582510.3390/math8050825Global Behavior of an Arbitrary-Order Nonlinear Difference Equation with a Nonnegative FunctionWen-Xiu Ma0Department of Mathematics, Zhejiang Normal University, Jinhua 321004, ChinaLet <inline-formula> <math display="inline"> <semantics> <mrow> <mi>k</mi> <mo>,</mo> <mi>l</mi> </mrow> </semantics> </math> </inline-formula> be two integers with <inline-formula> <math display="inline"> <semantics> <mrow> <mi>k</mi> <mo>≥</mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>l</mi> <mo>≥</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula>, <i>c</i> a real number greater than or equal to 1, and <i>f</i> a multivariable function satisfying <inline-formula> <math display="inline"> <semantics> <mrow> <mi>f</mi> <mo>(</mo> <msub> <mi>w</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>w</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>w</mi> <mn>3</mn> </msub> <mo>,</mo> <mo>⋯</mo> <mo>,</mo> <msub> <mi>w</mi> <mi>l</mi> </msub> <mo>)</mo> <mo>≥</mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula> when <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>w</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>w</mi> <mn>2</mn> </msub> <mo>≥</mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula>. We consider an arbitrary order nonlinear difference equation with the indicated function <i>f</i>: <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>z</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mi>c</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mi>n</mi> </msub> <mo>+</mo> <msub> <mi>z</mi> <mrow> <mi>n</mi> <mo>−</mo> <mi>k</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mi>c</mi> <mo>−</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>z</mi> <mi>n</mi> </msub> <msub> <mi>z</mi> <mrow> <mi>n</mi> <mo>−</mo> <mi>k</mi> </mrow> </msub> <mo>+</mo> <mi>c</mi> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mi>n</mi> </msub> <mo>,</mo> <msub> <mi>z</mi> <mrow> <mi>n</mi> <mo>−</mo> <mi>k</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>w</mi> <mn>3</mn> </msub> <mo>,</mo> <mo>⋯</mo> <mo>,</mo> <msub> <mi>w</mi> <mi>l</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>z</mi> <mi>n</mi> </msub> <msub> <mi>z</mi> <mrow> <mi>n</mi> <mo>−</mo> <mi>k</mi> </mrow> </msub> <mo>+</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mi>n</mi> </msub> <mo>,</mo> <msub> <mi>z</mi> <mrow> <mi>n</mi> <mo>−</mo> <mi>k</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>w</mi> <mn>3</mn> </msub> <mo>,</mo> <mo>⋯</mo> <mo>,</mo> <msub> <mi>w</mi> <mi>l</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>c</mi> </mrow> </mfrac> <mo>,</mo> <mspace width="4pt"></mspace> <mi>n</mi> <mo>≥</mo> <mn>0</mn> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> where initial values <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>z</mi> <mrow> <mo>−</mo> <mi>k</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>z</mi> <mrow> <mo>−</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>⋯</mo> <mo>,</mo> <msub> <mi>z</mi> <mn>0</mn> </msub> </mrow> </semantics> </math> </inline-formula> are positive and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>w</mi> <mi>i</mi> </msub> <mo>,</mo> <mspace width="4pt"></mspace> <mi>i</mi> <mo>≥</mo> <mn>3</mn> </mrow> </semantics> </math> </inline-formula>, are arbitrary functions of <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>z</mi> <mi>j</mi> </msub> <mo>,</mo> <mspace width="4pt"></mspace> <mi>n</mi> <mo>−</mo> <mi>k</mi> <mo>≤</mo> <mi>j</mi> <mo>≤</mo> <mi>n</mi> </mrow> </semantics> </math> </inline-formula>. We classify its solutions into three types with different asymptotic behaviors, and verify the global asymptotic stability of its positive equilibrium solution <inline-formula> <math display="inline"> <semantics> <mrow> <mover accent="true"> <mi>z</mi> <mo>¯</mo> </mover> <mo>=</mo> <mi>c</mi> </mrow> </semantics> </math> </inline-formula>.https://www.mdpi.com/2227-7390/8/5/825difference equationpositive equilibriumoscillatory solutionstrong negative feedbackglobal asymptotic stability
spellingShingle Wen-Xiu Ma
Global Behavior of an Arbitrary-Order Nonlinear Difference Equation with a Nonnegative Function
Mathematics
difference equation
positive equilibrium
oscillatory solution
strong negative feedback
global asymptotic stability
title Global Behavior of an Arbitrary-Order Nonlinear Difference Equation with a Nonnegative Function
title_full Global Behavior of an Arbitrary-Order Nonlinear Difference Equation with a Nonnegative Function
title_fullStr Global Behavior of an Arbitrary-Order Nonlinear Difference Equation with a Nonnegative Function
title_full_unstemmed Global Behavior of an Arbitrary-Order Nonlinear Difference Equation with a Nonnegative Function
title_short Global Behavior of an Arbitrary-Order Nonlinear Difference Equation with a Nonnegative Function
title_sort global behavior of an arbitrary order nonlinear difference equation with a nonnegative function
topic difference equation
positive equilibrium
oscillatory solution
strong negative feedback
global asymptotic stability
url https://www.mdpi.com/2227-7390/8/5/825
work_keys_str_mv AT wenxiuma globalbehaviorofanarbitraryordernonlineardifferenceequationwithanonnegativefunction