Liouville type theorems involving fractional order systems

In this paper, let α be any real number between 0 and 2, we study the following semi-linear elliptic system involving the fractional Laplacian: (−Δ)α/2u(x)=f(u(x),v(x)),x∈Rn,(−Δ)α/2v(x)=g(u(x),v(x)),x∈Rn. $\begin{cases}{\left(-{\Delta}\right)}^{\alpha /2}u\left(x\right)=f\left(u\left(x\right),v\left...

Full description

Bibliographic Details
Main Authors: Liao Qiuping, Liu Zhao, Wang Xinyue
Format: Article
Language:English
Published: De Gruyter 2024-03-01
Series:Advanced Nonlinear Studies
Subjects:
Online Access:https://doi.org/10.1515/ans-2023-0108
Description
Summary:In this paper, let α be any real number between 0 and 2, we study the following semi-linear elliptic system involving the fractional Laplacian: (−Δ)α/2u(x)=f(u(x),v(x)),x∈Rn,(−Δ)α/2v(x)=g(u(x),v(x)),x∈Rn. $\begin{cases}{\left(-{\Delta}\right)}^{\alpha /2}u\left(x\right)=f\left(u\left(x\right),v\left(x\right)\right), x\in {\mathbb{R}}^{n},\quad \hfill \\ {\left(-{\Delta}\right)}^{\alpha /2}v\left(x\right)=g\left(u\left(x\right),v\left(x\right)\right), x\in {\mathbb{R}}^{n}.\quad \hfill \end{cases}$ Under nature structure conditions on f and g, we classify the positive solutions for the semi-linear elliptic system involving the fractional Laplacian by using the direct method of the moving spheres introducing by W. Chen, Y. Li, and R. Zhang (“A direct method of moving spheres on fractional order equations,” J. Funct. Anal., vol. 272, pp. 4131–4157, 2017). In the half space, we establish a Liouville type theorem without any assumption of integrability by combining the direct method of moving planes and moving spheres, which improves the result proved by W. Dai, Z. Liu, and G. Lu (“Liouville type theorems for PDE and IE systems involving fractional Laplacian on a half space,” Potential Anal., vol. 46, pp. 569–588, 2017).
ISSN:2169-0375