A wave breaking criterion for a modified periodic two-component Camassa-Holm system
Abstract In this paper, a wave-breaking criterion of strong solutions is acquired in the Soblev space H s ( S ) × H s − 1 ( S ) $H^{s}(\mathbb{S})\times H^{s-1}(\mathbb{S})$ with s > 3 2 $s>\frac{3}{2}$ by employing the localization analysis in the transport equation theory, which is different...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2016-03-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13660-016-1023-2 |
_version_ | 1819128278358687744 |
---|---|
author | Ying Wang |
author_facet | Ying Wang |
author_sort | Ying Wang |
collection | DOAJ |
description | Abstract In this paper, a wave-breaking criterion of strong solutions is acquired in the Soblev space H s ( S ) × H s − 1 ( S ) $H^{s}(\mathbb{S})\times H^{s-1}(\mathbb{S})$ with s > 3 2 $s>\frac{3}{2}$ by employing the localization analysis in the transport equation theory, which is different from that of the two-component Camassa-Holm system. |
first_indexed | 2024-12-22T08:25:17Z |
format | Article |
id | doaj.art-6d1ce14523df4ec69cf8fad8213f3ae1 |
institution | Directory Open Access Journal |
issn | 1029-242X |
language | English |
last_indexed | 2024-12-22T08:25:17Z |
publishDate | 2016-03-01 |
publisher | SpringerOpen |
record_format | Article |
series | Journal of Inequalities and Applications |
spelling | doaj.art-6d1ce14523df4ec69cf8fad8213f3ae12022-12-21T18:32:38ZengSpringerOpenJournal of Inequalities and Applications1029-242X2016-03-012016111410.1186/s13660-016-1023-2A wave breaking criterion for a modified periodic two-component Camassa-Holm systemYing Wang0School of Science, Sichuan University of Science and EngineeringAbstract In this paper, a wave-breaking criterion of strong solutions is acquired in the Soblev space H s ( S ) × H s − 1 ( S ) $H^{s}(\mathbb{S})\times H^{s-1}(\mathbb{S})$ with s > 3 2 $s>\frac{3}{2}$ by employing the localization analysis in the transport equation theory, which is different from that of the two-component Camassa-Holm system.http://link.springer.com/article/10.1186/s13660-016-1023-2a modified periodic two-component Camassa-Holm systemwave-breaking criterionlocalization analysis |
spellingShingle | Ying Wang A wave breaking criterion for a modified periodic two-component Camassa-Holm system Journal of Inequalities and Applications a modified periodic two-component Camassa-Holm system wave-breaking criterion localization analysis |
title | A wave breaking criterion for a modified periodic two-component Camassa-Holm system |
title_full | A wave breaking criterion for a modified periodic two-component Camassa-Holm system |
title_fullStr | A wave breaking criterion for a modified periodic two-component Camassa-Holm system |
title_full_unstemmed | A wave breaking criterion for a modified periodic two-component Camassa-Holm system |
title_short | A wave breaking criterion for a modified periodic two-component Camassa-Holm system |
title_sort | wave breaking criterion for a modified periodic two component camassa holm system |
topic | a modified periodic two-component Camassa-Holm system wave-breaking criterion localization analysis |
url | http://link.springer.com/article/10.1186/s13660-016-1023-2 |
work_keys_str_mv | AT yingwang awavebreakingcriterionforamodifiedperiodictwocomponentcamassaholmsystem AT yingwang wavebreakingcriterionforamodifiedperiodictwocomponentcamassaholmsystem |