A wave breaking criterion for a modified periodic two-component Camassa-Holm system

Abstract In this paper, a wave-breaking criterion of strong solutions is acquired in the Soblev space H s ( S ) × H s − 1 ( S ) $H^{s}(\mathbb{S})\times H^{s-1}(\mathbb{S})$ with s > 3 2 $s>\frac{3}{2}$ by employing the localization analysis in the transport equation theory, which is different...

Full description

Bibliographic Details
Main Author: Ying Wang
Format: Article
Language:English
Published: SpringerOpen 2016-03-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-016-1023-2
_version_ 1819128278358687744
author Ying Wang
author_facet Ying Wang
author_sort Ying Wang
collection DOAJ
description Abstract In this paper, a wave-breaking criterion of strong solutions is acquired in the Soblev space H s ( S ) × H s − 1 ( S ) $H^{s}(\mathbb{S})\times H^{s-1}(\mathbb{S})$ with s > 3 2 $s>\frac{3}{2}$ by employing the localization analysis in the transport equation theory, which is different from that of the two-component Camassa-Holm system.
first_indexed 2024-12-22T08:25:17Z
format Article
id doaj.art-6d1ce14523df4ec69cf8fad8213f3ae1
institution Directory Open Access Journal
issn 1029-242X
language English
last_indexed 2024-12-22T08:25:17Z
publishDate 2016-03-01
publisher SpringerOpen
record_format Article
series Journal of Inequalities and Applications
spelling doaj.art-6d1ce14523df4ec69cf8fad8213f3ae12022-12-21T18:32:38ZengSpringerOpenJournal of Inequalities and Applications1029-242X2016-03-012016111410.1186/s13660-016-1023-2A wave breaking criterion for a modified periodic two-component Camassa-Holm systemYing Wang0School of Science, Sichuan University of Science and EngineeringAbstract In this paper, a wave-breaking criterion of strong solutions is acquired in the Soblev space H s ( S ) × H s − 1 ( S ) $H^{s}(\mathbb{S})\times H^{s-1}(\mathbb{S})$ with s > 3 2 $s>\frac{3}{2}$ by employing the localization analysis in the transport equation theory, which is different from that of the two-component Camassa-Holm system.http://link.springer.com/article/10.1186/s13660-016-1023-2a modified periodic two-component Camassa-Holm systemwave-breaking criterionlocalization analysis
spellingShingle Ying Wang
A wave breaking criterion for a modified periodic two-component Camassa-Holm system
Journal of Inequalities and Applications
a modified periodic two-component Camassa-Holm system
wave-breaking criterion
localization analysis
title A wave breaking criterion for a modified periodic two-component Camassa-Holm system
title_full A wave breaking criterion for a modified periodic two-component Camassa-Holm system
title_fullStr A wave breaking criterion for a modified periodic two-component Camassa-Holm system
title_full_unstemmed A wave breaking criterion for a modified periodic two-component Camassa-Holm system
title_short A wave breaking criterion for a modified periodic two-component Camassa-Holm system
title_sort wave breaking criterion for a modified periodic two component camassa holm system
topic a modified periodic two-component Camassa-Holm system
wave-breaking criterion
localization analysis
url http://link.springer.com/article/10.1186/s13660-016-1023-2
work_keys_str_mv AT yingwang awavebreakingcriterionforamodifiedperiodictwocomponentcamassaholmsystem
AT yingwang wavebreakingcriterionforamodifiedperiodictwocomponentcamassaholmsystem