Existing and Potential Applications of Elastography for Measuring the Viscoelasticity of Biological Tissues In Vivo
Mechanical tissue properties contribute to tissue shape change during development. Emerging evidence suggests that gradients of viscoelasticity correspond to cell movement and gene expression patterns. To accurately define mechanisms of morphogenesis, a combination of precise empirical measurements...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2021-06-01
|
Series: | Frontiers in Physics |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fphy.2021.670571/full |
Summary: | Mechanical tissue properties contribute to tissue shape change during development. Emerging evidence suggests that gradients of viscoelasticity correspond to cell movement and gene expression patterns. To accurately define mechanisms of morphogenesis, a combination of precise empirical measurements and theoretical approaches are required. Here, we review elastography as a method to characterize viscoelastic properties of tissue in vivo. We discuss its current clinical applications in mature tissues and its potential for characterizing embryonic tissues. |
---|---|
ISSN: | 2296-424X |