Microstructuring YbRh2Si2 for resistance and noise measurements down to ultra-low temperatures

The discovery of superconductivity in the quantum critical Kondo-lattice system YbRh _2 Si _2 at an extremely low temperature of 2 mK has inspired efforts to perform high-resolution electrical resistivity measurements down to this temperature range in highly conductive materials. Here we show that c...

Full description

Bibliographic Details
Main Authors: Alexander Steppke, Sandra Hamann, Markus König, Andrew P Mackenzie, Kristin Kliemt, Cornelius Krellner, Marvin Kopp, Martin Lonsky, Jens Müller, Lev V Levitin, John Saunders, Manuel Brando
Format: Article
Language:English
Published: IOP Publishing 2022-01-01
Series:New Journal of Physics
Subjects:
Online Access:https://doi.org/10.1088/1367-2630/aca8c6
_version_ 1797748762646413312
author Alexander Steppke
Sandra Hamann
Markus König
Andrew P Mackenzie
Kristin Kliemt
Cornelius Krellner
Marvin Kopp
Martin Lonsky
Jens Müller
Lev V Levitin
John Saunders
Manuel Brando
author_facet Alexander Steppke
Sandra Hamann
Markus König
Andrew P Mackenzie
Kristin Kliemt
Cornelius Krellner
Marvin Kopp
Martin Lonsky
Jens Müller
Lev V Levitin
John Saunders
Manuel Brando
author_sort Alexander Steppke
collection DOAJ
description The discovery of superconductivity in the quantum critical Kondo-lattice system YbRh _2 Si _2 at an extremely low temperature of 2 mK has inspired efforts to perform high-resolution electrical resistivity measurements down to this temperature range in highly conductive materials. Here we show that control over the sample geometry by microstructuring using focused-ion-beam techniques allows to reach ultra-low temperatures and increase signal-to-noise ratios (SNRs) tenfold, without adverse effects to sample quality. In five experiments we show four-terminal sensing resistance and magnetoresistance measurements which exhibit sharp phase transitions at the Néel temperature, and Shubnikov–de-Haas (SdH) oscillations between 13 T and 18 T where we identified a new SdH frequency of 0.39 kT. The increased SNR allowed resistance fluctuation (noise) spectroscopy that would not be possible for bulk crystals, and confirmed intrinsic $1/f$ -type fluctuations. Under controlled strain, two thin microstructured samples exhibited a large increase of $T_\mathrm{N}$ from 67 mK up to 188 mK while still showing clear signatures of the phase transition and SdH oscillations. Superconducting quantum interference device-based thermal noise spectroscopy measurements in a nuclear demagnetization refrigerator down to 0.95 mK, show a sharp superconducting transition at $T_\mathrm{c} = 1.2$  mK. These experiments demonstrate microstructuring as a powerful tool to investigate the resistance and the noise spectrum of highly conductive correlated metals over wide temperature ranges.
first_indexed 2024-03-12T16:10:28Z
format Article
id doaj.art-6d2aa0ede47743e9bd083b522ea2a4de
institution Directory Open Access Journal
issn 1367-2630
language English
last_indexed 2024-03-12T16:10:28Z
publishDate 2022-01-01
publisher IOP Publishing
record_format Article
series New Journal of Physics
spelling doaj.art-6d2aa0ede47743e9bd083b522ea2a4de2023-08-09T14:09:55ZengIOP PublishingNew Journal of Physics1367-26302022-01-01241212303310.1088/1367-2630/aca8c6Microstructuring YbRh2Si2 for resistance and noise measurements down to ultra-low temperaturesAlexander Steppke0https://orcid.org/0000-0001-6495-3917Sandra Hamann1Markus König2Andrew P Mackenzie3Kristin Kliemt4https://orcid.org/0000-0001-7415-4158Cornelius Krellner5Marvin Kopp6Martin Lonsky7https://orcid.org/0000-0002-8955-3095Jens Müller8Lev V Levitin9John Saunders10Manuel Brando11Max-Planck-Institute for Chemical Physics of Solids , Noethnitzer Str. 40, 01187 Dresden, Germany; University of Zurich , Winterthurerstr. 190, 8057 Zurich, Switzerland; Paul Scherrer Institute , Forschungsstr. 111, 5232 Villigen, SwitzerlandMax-Planck-Institute for Chemical Physics of Solids , Noethnitzer Str. 40, 01187 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf , Bautzner Landstr. 400, 01328 Dresden, GermanyMax-Planck-Institute for Chemical Physics of Solids , Noethnitzer Str. 40, 01187 Dresden, GermanyMax-Planck-Institute for Chemical Physics of Solids , Noethnitzer Str. 40, 01187 Dresden, Germany; Scottish Universities Physics Alliance, School of Physics and Astronomy, University of St Andrews , St Andrews, United KingdomPhysikalisches Institut, Goethe-Universität Frankfurt , Max-von-Laue-Str. 1, 60438 Frankfurt am Main, GermanyPhysikalisches Institut, Goethe-Universität Frankfurt , Max-von-Laue-Str. 1, 60438 Frankfurt am Main, GermanyPhysikalisches Institut, Goethe-Universität Frankfurt , Max-von-Laue-Str. 1, 60438 Frankfurt am Main, GermanyPhysikalisches Institut, Goethe-Universität Frankfurt , Max-von-Laue-Str. 1, 60438 Frankfurt am Main, GermanyPhysikalisches Institut, Goethe-Universität Frankfurt , Max-von-Laue-Str. 1, 60438 Frankfurt am Main, GermanyDepartment of Physics, Royal Holloway University of London , Egham, Surrey TW20 0EX, United KingdomDepartment of Physics, Royal Holloway University of London , Egham, Surrey TW20 0EX, United KingdomMax-Planck-Institute for Chemical Physics of Solids , Noethnitzer Str. 40, 01187 Dresden, GermanyThe discovery of superconductivity in the quantum critical Kondo-lattice system YbRh _2 Si _2 at an extremely low temperature of 2 mK has inspired efforts to perform high-resolution electrical resistivity measurements down to this temperature range in highly conductive materials. Here we show that control over the sample geometry by microstructuring using focused-ion-beam techniques allows to reach ultra-low temperatures and increase signal-to-noise ratios (SNRs) tenfold, without adverse effects to sample quality. In five experiments we show four-terminal sensing resistance and magnetoresistance measurements which exhibit sharp phase transitions at the Néel temperature, and Shubnikov–de-Haas (SdH) oscillations between 13 T and 18 T where we identified a new SdH frequency of 0.39 kT. The increased SNR allowed resistance fluctuation (noise) spectroscopy that would not be possible for bulk crystals, and confirmed intrinsic $1/f$ -type fluctuations. Under controlled strain, two thin microstructured samples exhibited a large increase of $T_\mathrm{N}$ from 67 mK up to 188 mK while still showing clear signatures of the phase transition and SdH oscillations. Superconducting quantum interference device-based thermal noise spectroscopy measurements in a nuclear demagnetization refrigerator down to 0.95 mK, show a sharp superconducting transition at $T_\mathrm{c} = 1.2$  mK. These experiments demonstrate microstructuring as a powerful tool to investigate the resistance and the noise spectrum of highly conductive correlated metals over wide temperature ranges.https://doi.org/10.1088/1367-2630/aca8c6strongly correlated electron systemsheavy fermionselectrical and thermal conduction in crystalline metals and alloysfluctuation phenomenarandom processesnoise
spellingShingle Alexander Steppke
Sandra Hamann
Markus König
Andrew P Mackenzie
Kristin Kliemt
Cornelius Krellner
Marvin Kopp
Martin Lonsky
Jens Müller
Lev V Levitin
John Saunders
Manuel Brando
Microstructuring YbRh2Si2 for resistance and noise measurements down to ultra-low temperatures
New Journal of Physics
strongly correlated electron systems
heavy fermions
electrical and thermal conduction in crystalline metals and alloys
fluctuation phenomena
random processes
noise
title Microstructuring YbRh2Si2 for resistance and noise measurements down to ultra-low temperatures
title_full Microstructuring YbRh2Si2 for resistance and noise measurements down to ultra-low temperatures
title_fullStr Microstructuring YbRh2Si2 for resistance and noise measurements down to ultra-low temperatures
title_full_unstemmed Microstructuring YbRh2Si2 for resistance and noise measurements down to ultra-low temperatures
title_short Microstructuring YbRh2Si2 for resistance and noise measurements down to ultra-low temperatures
title_sort microstructuring ybrh2si2 for resistance and noise measurements down to ultra low temperatures
topic strongly correlated electron systems
heavy fermions
electrical and thermal conduction in crystalline metals and alloys
fluctuation phenomena
random processes
noise
url https://doi.org/10.1088/1367-2630/aca8c6
work_keys_str_mv AT alexandersteppke microstructuringybrh2si2forresistanceandnoisemeasurementsdowntoultralowtemperatures
AT sandrahamann microstructuringybrh2si2forresistanceandnoisemeasurementsdowntoultralowtemperatures
AT markuskonig microstructuringybrh2si2forresistanceandnoisemeasurementsdowntoultralowtemperatures
AT andrewpmackenzie microstructuringybrh2si2forresistanceandnoisemeasurementsdowntoultralowtemperatures
AT kristinkliemt microstructuringybrh2si2forresistanceandnoisemeasurementsdowntoultralowtemperatures
AT corneliuskrellner microstructuringybrh2si2forresistanceandnoisemeasurementsdowntoultralowtemperatures
AT marvinkopp microstructuringybrh2si2forresistanceandnoisemeasurementsdowntoultralowtemperatures
AT martinlonsky microstructuringybrh2si2forresistanceandnoisemeasurementsdowntoultralowtemperatures
AT jensmuller microstructuringybrh2si2forresistanceandnoisemeasurementsdowntoultralowtemperatures
AT levvlevitin microstructuringybrh2si2forresistanceandnoisemeasurementsdowntoultralowtemperatures
AT johnsaunders microstructuringybrh2si2forresistanceandnoisemeasurementsdowntoultralowtemperatures
AT manuelbrando microstructuringybrh2si2forresistanceandnoisemeasurementsdowntoultralowtemperatures