microRNA-155, induced by interleukin-1ß, represses the expression of microphthalmia-associated transcription factor (MITF-M) in melanoma cells.

Loss of expression of surface antigens represents a significant problem for cancer immunotherapy. Microphthalmia-associated transcription factor (MITF-M) regulates melanocyte fate by driving expression of many differentiation genes, whose protein products can be recognized by cytolytic T lymphocytes...

Full description

Bibliographic Details
Main Authors: Nathalie Arts, Stefania Cané, Marc Hennequart, Juliette Lamy, Guido Bommer, Benoît Van den Eynde, Etienne De Plaen
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2015-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4390329?pdf=render
Description
Summary:Loss of expression of surface antigens represents a significant problem for cancer immunotherapy. Microphthalmia-associated transcription factor (MITF-M) regulates melanocyte fate by driving expression of many differentiation genes, whose protein products can be recognized by cytolytic T lymphocytes. We previously reported that interleukin-1ß (IL-1ß) can downregulate MITF-M levels. Here we show that downregulation of MITF-M expression by IL-1ß was paralleled by an upregulation of miR-155 expression in four melanoma lines. We confirmed that miR-155 was able to target endogenous MITF-M in melanoma cells and demonstrated a role for miR-155 in the IL-1ß-induced repression of MITF-M by using an antagomiR. Notably, we also observed a strong negative correlation between MITF-M and miR-155 levels in a mouse model of melanoma. Taken together, our results indicate that MITF-M downregulation by inflammatory stimuli might be partly due to miR-155 upregulation. This could represent a novel mechanism of melanoma immune escape in an inflammatory microenvironment.
ISSN:1932-6203