End-to-End Deep Reinforcement Learning for Decentralized Task Allocation and Navigation for a Multi-Robot System
In this paper, we present a novel deep reinforcement learning (DRL) based method that is used to perform multi-robot task allocation (MRTA) and navigation in an end-to-end fashion. The policy operates in a decentralized manner mapping raw sensor measurements to the robot’s steering commands without...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-03-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/11/7/2895 |
Summary: | In this paper, we present a novel deep reinforcement learning (DRL) based method that is used to perform multi-robot task allocation (MRTA) and navigation in an end-to-end fashion. The policy operates in a decentralized manner mapping raw sensor measurements to the robot’s steering commands without the need to construct a map of the environment. We also present a new metric called the Task Allocation Index (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mi>A</mi><mi>I</mi></mrow></semantics></math></inline-formula>), which measures the performance of a method that performs MRTA and navigation from end-to-end in performing MRTA. The policy was trained on a simulated gazebo environment. The centralized learning and decentralized execution paradigm was used for training the policy. The policy was evaluated quantitatively and visually. The simulation results showed the effectiveness of the proposed method deployed on multiple Turtlebot3 robots. |
---|---|
ISSN: | 2076-3417 |