Matrix Approach for Analyzing <i>n</i>-Site Generalized ASIP Systems: PGF and Site Occupancy Probabilities

The Asymmetric Simple Inclusion Process (ASIP) is an <i>n</i>-site tandem stochastic network with a Poisson arrival influx into the first site. Each site has an unlimited buffer with a gate in front of it. Each gate opens, independently of all other gates, following a site-dependent Expo...

Full description

Bibliographic Details
Main Authors: Uri Yechiali, Yaron Yeger
Format: Article
Language:English
Published: MDPI AG 2022-12-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/23/4624
Description
Summary:The Asymmetric Simple Inclusion Process (ASIP) is an <i>n</i>-site tandem stochastic network with a Poisson arrival influx into the first site. Each site has an unlimited buffer with a gate in front of it. Each gate opens, independently of all other gates, following a site-dependent Exponential inter-opening time. When a site’s gate opens, all particles occupying the site move simultaneously to the next site. In this paper, a Generalized ASIP network is analyzed where the influx is to all sites, while gate openings are determined by a general renewal process. A compact matrix approach—instead of the conventional (and tedious) successive substitution method—is constructed for the derivation of the multidimensional probability-generating function (PGF) of the site occupancies. It is shown that the set of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mn>2</mn><mi>n</mi></mrow></mtd></mtr><mtr><mtd><mi>n</mi></mtd></mtr></mtable><mo>)</mo></mrow></semantics></math></inline-formula> linear equations required to obtain the PGF of an <i>n</i>-site network can be first cut by half into a set of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced close=")" open="("><mtable><mtr><mtd><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mi>n</mi></mtd></mtr></mtable></mfenced></mrow></semantics></math></inline-formula> equations, and then further reduced to a set of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mn>2</mn><mi>n</mi></msup><mo>−</mo><mfenced close=")" open="("><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></semantics></math></inline-formula> equations. The latter set can be additionally split into several smaller triangular subsets. It is also shown how the PGF of an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced close=")" open="("><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></semantics></math></inline-formula>-site network can be derived from the corresponding PGF of an <i>n</i>-site system. Explicit results for networks with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><mn>3</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula> sites are obtained. The matrix approach is utilized to explicitly calculate the probability that site <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo> </mo><mfenced close=")" open="("><mrow><mi>k</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi></mrow></mfenced></mrow></semantics></math></inline-formula> is occupied. We show that, in the case where arrivals occur to the first site only, these probabilities are functions of both the site’s index and the arrival flux and not solely of the site’s index. Consequently, refined formulas for the latter probabilities and for the mean conditional site occupancies are derived. We further show that in the case where the arrival process to the first site is Poisson with rate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula>, the following interesting property holds: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mfenced close=")" open="("><mrow><mi>s</mi><mi>i</mi><mi>t</mi><mi>e</mi><mtext> </mtext><mi>k</mi><mtext> </mtext><mi>i</mi><mi>s</mi><mtext> </mtext><mi>o</mi><mi>c</mi><mi>c</mi><mi>u</mi><mi>p</mi><mi>i</mi><mi>e</mi><mi>d</mi><mtext> </mtext><mo>|</mo><mtext> </mtext><mi>λ</mi><mo>=</mo><mn>1</mn></mrow></mfenced><mo>=</mo><mi>P</mi><mfenced close=")" open="("><mrow><mi>s</mi><mi>i</mi><mi>t</mi><mi>e</mi><mtext> </mtext><mi>k</mi><mo>+</mo><mn>1</mn><mtext> </mtext><mi>i</mi><mi>s</mi><mtext> </mtext><mi>o</mi><mi>c</mi><mi>c</mi><mi>u</mi><mi>p</mi><mi>i</mi><mi>e</mi><mi>d</mi><mtext> </mtext><mo>|</mo><mtext> </mtext><mi>λ</mi><mo stretchy="false">→</mo><mo>∞</mo></mrow></mfenced></mrow></semantics></math></inline-formula>. The case where the inter-gate opening intervals are Gamma distributed is investigated and explicit formulas are obtained. Mean site occupancy and mean total load of the first <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>k</mi></semantics></math></inline-formula> sites are calculated. Numerical results are presented.
ISSN:2227-7390