Pilots’ willingness to operate in urban air mobility integrated airspace: a moderated mediation analysis

Interest in advanced air mobility (AAM) and urban air mobility (UAM) operations for on-demand passenger and cargo transport continues to grow. There is ongoing research on market demand and forecast, community acceptance, privacy, and security. There is also ongoing research by National Aeronautics...

Full description

Bibliographic Details
Main Authors: Lakshmi Vempati, Sabrina Woods, Scott R. Winter
Format: Article
Language:English
Published: Canadian Science Publishing 2022-01-01
Series:Drone Systems and Applications
Subjects:
Online Access:https://cdnsciencepub.com/doi/10.1139/juvs-2021-0009
Description
Summary:Interest in advanced air mobility (AAM) and urban air mobility (UAM) operations for on-demand passenger and cargo transport continues to grow. There is ongoing research on market demand and forecast, community acceptance, privacy, and security. There is also ongoing research by National Aeronautics and Space Administration , Federal Aviation Administration, academia, and industry on airspace integration, regulatory, process, and procedural challenges. Safe integration of UAM and AAM will also require different stakeholder perspectives such as air traffic controllers, manned aircraft pilots, remote pilots, UAM operators, and the community. This research aimed to assess the willingness of manned aircraft pilots to operate in UAM integrated airspace based on airspace complexity and UAM automation level. In addition, a moderated mediation analysis was conducted using trust and perceived risk as mediators and operator type as a moderating variable. The results indicated that automation level influenced pilots’ willingness to operate an aircraft in integrated airspace. A moderating effect of operation type on automation level and willingness to pilot an aircraft was also observed: professional pilots were more amenable to UAM operations with a pilot on board compared with remotely piloted operations. Results from the study are expected to inform airspace integration challenges, processes, and procedures for UAM integrated operations.
ISSN:2564-4939