Photonic Hooks Generated by a Concave Micro-Cylinder Based on Structure-Constrained Functions

Owing to its crooked trajectory and small full width at half-maximum, photonic hook (PH) has attracted wide attention since its inception and experimental confirmation. However, the present generation and regulation of PH are mostly dependent on the breaking of the symmetry of the system composed of...

Full description

Bibliographic Details
Main Authors: Jialing Zhang, Guoxia Han, Ze Yang, Shuyue Xie, Kaiyun Zhan
Format: Article
Language:English
Published: MDPI AG 2022-08-01
Series:Micromachines
Subjects:
Online Access:https://www.mdpi.com/2072-666X/13/9/1434
Description
Summary:Owing to its crooked trajectory and small full width at half-maximum, photonic hook (PH) has attracted wide attention since its inception and experimental confirmation. However, the present generation and regulation of PH are mostly dependent on the breaking of the symmetry of the system composed of the incident light and the regular structure particles, which inevitably limits the research of PH. In this work, the PH of the irregular particles is demonstrated with the help of a structure-constrained function (SCF). By varying the coefficients of the function, characteristic parameters of the PH, such as the bending angle, the effective length and the bending direction, can be effectively modulated. Meanwhile, high-quality PHs with a bending angle of up to 46<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula> and an effective length of up to 11.90<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula>, as well as PHs with three bends, can be obtained using this method. The formation mechanism of the PH is revealed by simulating the distribution of the field intensity with the finite element method and analyzing with ray optics. This is the first time that we introduce a function into the investigation of PH, paving a new way for a more interesting exploration of PH.
ISSN:2072-666X