An Extension of Beta Function by Using Wiman’s Function
The main purpose of this paper is to study extension of the extended beta function by Shadab et al. by using 2-parameter Mittag-Leffler function given by Wiman. In particular, we study some functional relations, integral representation, Mellin transform and derivative formulas for this extended beta...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-08-01
|
Series: | Axioms |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-1680/10/3/187 |
_version_ | 1797520186094387200 |
---|---|
author | Rahul Goyal Shaher Momani Praveen Agarwal Michael Th. Rassias |
author_facet | Rahul Goyal Shaher Momani Praveen Agarwal Michael Th. Rassias |
author_sort | Rahul Goyal |
collection | DOAJ |
description | The main purpose of this paper is to study extension of the extended beta function by Shadab et al. by using 2-parameter Mittag-Leffler function given by Wiman. In particular, we study some functional relations, integral representation, Mellin transform and derivative formulas for this extended beta function. |
first_indexed | 2024-03-10T07:54:11Z |
format | Article |
id | doaj.art-6d6cf964c8bc402c95ade63cdc69a1fd |
institution | Directory Open Access Journal |
issn | 2075-1680 |
language | English |
last_indexed | 2024-03-10T07:54:11Z |
publishDate | 2021-08-01 |
publisher | MDPI AG |
record_format | Article |
series | Axioms |
spelling | doaj.art-6d6cf964c8bc402c95ade63cdc69a1fd2023-11-22T12:02:40ZengMDPI AGAxioms2075-16802021-08-0110318710.3390/axioms10030187An Extension of Beta Function by Using Wiman’s FunctionRahul Goyal0Shaher Momani1Praveen Agarwal2Michael Th. Rassias3Department of Mathematics, Anand International College of Engineering, Jaipur 303012, IndiaDepartment of Mathematics, Faculty of Science, University of Jordan, Amman 11942, JordanDepartment of Mathematics, Anand International College of Engineering, Jaipur 303012, IndiaInstitute for Advanced Study, Program in Interdisciplinary Studies, 1 Einstein Dr, Princeton, NJ 08540, USAThe main purpose of this paper is to study extension of the extended beta function by Shadab et al. by using 2-parameter Mittag-Leffler function given by Wiman. In particular, we study some functional relations, integral representation, Mellin transform and derivative formulas for this extended beta function.https://www.mdpi.com/2075-1680/10/3/187classical Euler beta functiongamma functionGauss hypergeometric functionconfluent hypergeometric functionMittag-Leffler function |
spellingShingle | Rahul Goyal Shaher Momani Praveen Agarwal Michael Th. Rassias An Extension of Beta Function by Using Wiman’s Function Axioms classical Euler beta function gamma function Gauss hypergeometric function confluent hypergeometric function Mittag-Leffler function |
title | An Extension of Beta Function by Using Wiman’s Function |
title_full | An Extension of Beta Function by Using Wiman’s Function |
title_fullStr | An Extension of Beta Function by Using Wiman’s Function |
title_full_unstemmed | An Extension of Beta Function by Using Wiman’s Function |
title_short | An Extension of Beta Function by Using Wiman’s Function |
title_sort | extension of beta function by using wiman s function |
topic | classical Euler beta function gamma function Gauss hypergeometric function confluent hypergeometric function Mittag-Leffler function |
url | https://www.mdpi.com/2075-1680/10/3/187 |
work_keys_str_mv | AT rahulgoyal anextensionofbetafunctionbyusingwimansfunction AT shahermomani anextensionofbetafunctionbyusingwimansfunction AT praveenagarwal anextensionofbetafunctionbyusingwimansfunction AT michaelthrassias anextensionofbetafunctionbyusingwimansfunction AT rahulgoyal extensionofbetafunctionbyusingwimansfunction AT shahermomani extensionofbetafunctionbyusingwimansfunction AT praveenagarwal extensionofbetafunctionbyusingwimansfunction AT michaelthrassias extensionofbetafunctionbyusingwimansfunction |