An Extension of Beta Function by Using Wiman’s Function

The main purpose of this paper is to study extension of the extended beta function by Shadab et al. by using 2-parameter Mittag-Leffler function given by Wiman. In particular, we study some functional relations, integral representation, Mellin transform and derivative formulas for this extended beta...

Full description

Bibliographic Details
Main Authors: Rahul Goyal, Shaher Momani, Praveen Agarwal, Michael Th. Rassias
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/10/3/187
_version_ 1797520186094387200
author Rahul Goyal
Shaher Momani
Praveen Agarwal
Michael Th. Rassias
author_facet Rahul Goyal
Shaher Momani
Praveen Agarwal
Michael Th. Rassias
author_sort Rahul Goyal
collection DOAJ
description The main purpose of this paper is to study extension of the extended beta function by Shadab et al. by using 2-parameter Mittag-Leffler function given by Wiman. In particular, we study some functional relations, integral representation, Mellin transform and derivative formulas for this extended beta function.
first_indexed 2024-03-10T07:54:11Z
format Article
id doaj.art-6d6cf964c8bc402c95ade63cdc69a1fd
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-10T07:54:11Z
publishDate 2021-08-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-6d6cf964c8bc402c95ade63cdc69a1fd2023-11-22T12:02:40ZengMDPI AGAxioms2075-16802021-08-0110318710.3390/axioms10030187An Extension of Beta Function by Using Wiman’s FunctionRahul Goyal0Shaher Momani1Praveen Agarwal2Michael Th. Rassias3Department of Mathematics, Anand International College of Engineering, Jaipur 303012, IndiaDepartment of Mathematics, Faculty of Science, University of Jordan, Amman 11942, JordanDepartment of Mathematics, Anand International College of Engineering, Jaipur 303012, IndiaInstitute for Advanced Study, Program in Interdisciplinary Studies, 1 Einstein Dr, Princeton, NJ 08540, USAThe main purpose of this paper is to study extension of the extended beta function by Shadab et al. by using 2-parameter Mittag-Leffler function given by Wiman. In particular, we study some functional relations, integral representation, Mellin transform and derivative formulas for this extended beta function.https://www.mdpi.com/2075-1680/10/3/187classical Euler beta functiongamma functionGauss hypergeometric functionconfluent hypergeometric functionMittag-Leffler function
spellingShingle Rahul Goyal
Shaher Momani
Praveen Agarwal
Michael Th. Rassias
An Extension of Beta Function by Using Wiman’s Function
Axioms
classical Euler beta function
gamma function
Gauss hypergeometric function
confluent hypergeometric function
Mittag-Leffler function
title An Extension of Beta Function by Using Wiman’s Function
title_full An Extension of Beta Function by Using Wiman’s Function
title_fullStr An Extension of Beta Function by Using Wiman’s Function
title_full_unstemmed An Extension of Beta Function by Using Wiman’s Function
title_short An Extension of Beta Function by Using Wiman’s Function
title_sort extension of beta function by using wiman s function
topic classical Euler beta function
gamma function
Gauss hypergeometric function
confluent hypergeometric function
Mittag-Leffler function
url https://www.mdpi.com/2075-1680/10/3/187
work_keys_str_mv AT rahulgoyal anextensionofbetafunctionbyusingwimansfunction
AT shahermomani anextensionofbetafunctionbyusingwimansfunction
AT praveenagarwal anextensionofbetafunctionbyusingwimansfunction
AT michaelthrassias anextensionofbetafunctionbyusingwimansfunction
AT rahulgoyal extensionofbetafunctionbyusingwimansfunction
AT shahermomani extensionofbetafunctionbyusingwimansfunction
AT praveenagarwal extensionofbetafunctionbyusingwimansfunction
AT michaelthrassias extensionofbetafunctionbyusingwimansfunction