Brain network involved in visual processing of movement stimuli used in upper limb robotic training: an fMRI study
<p>Abstract</p> <p>Background</p> <p>The potential of robot-mediated therapy and virtual reality in neurorehabilitation is becoming of increasing importance. However, there is limited information, using neuroimaging, on the neural networks involved in training with thes...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2012-07-01
|
Series: | Journal of NeuroEngineering and Rehabilitation |
Subjects: | |
Online Access: | http://www.jneuroengrehab.com/content/9/1/49 |
_version_ | 1818238123222499328 |
---|---|
author | Nocchi Federico Gazzellini Simone Grisolia Carmela Petrarca Maurizio Cannatà Vittorio Cappa Paolo D’Alessio Tommaso Castelli Enrico |
author_facet | Nocchi Federico Gazzellini Simone Grisolia Carmela Petrarca Maurizio Cannatà Vittorio Cappa Paolo D’Alessio Tommaso Castelli Enrico |
author_sort | Nocchi Federico |
collection | DOAJ |
description | <p>Abstract</p> <p>Background</p> <p>The potential of robot-mediated therapy and virtual reality in neurorehabilitation is becoming of increasing importance. However, there is limited information, using neuroimaging, on the neural networks involved in training with these technologies. This study was intended to detect the brain network involved in the visual processing of movement during robotic training. The main aim was to investigate the existence of a common cerebral network able to assimilate biological (human upper limb) and non-biological (abstract object) movements, hence testing the suitability of the visual non-biological feedback provided by the InMotion2 Robot.</p> <p>Methods</p> <p>A visual functional Magnetic Resonance Imaging (fMRI) task was administered to 22 healthy subjects. The task required observation and retrieval of motor gestures and of the visual feedback used in robotic training. Functional activations of both biological and non-biological movements were examined to identify areas activated in both conditions, along with differential activity in upper limb vs. abstract object trials. Control of response was also tested by administering trials with congruent and incongruent reaching movements.</p> <p>Results</p> <p>The observation of upper limb and abstract object movements elicited similar patterns of activations according to a caudo-rostral pathway for the visual processing of movements (including specific areas of the occipital, temporal, parietal, and frontal lobes). Similarly, overlapping activations were found for the subsequent retrieval of the observed movement. Furthermore, activations of frontal cortical areas were associated with congruent trials more than with the incongruent ones.</p> <p>Conclusions</p> <p>This study identified the neural pathway associated with visual processing of movement stimuli used in upper limb robot-mediated training and investigated the brain’s ability to assimilate abstract object movements with human motor gestures. In both conditions, activations were elicited in cerebral areas involved in visual perception, sensory integration, recognition of movement, re-mapping on the somatosensory and motor cortex, storage in memory, and response control. Results from the congruent vs. incongruent trials revealed greater activity for the former condition than the latter in a network including cingulate cortex, right inferior and middle frontal gyrus that are involved in the go-signal and in decision control. Results on healthy subjects would suggest the appropriateness of an abstract visual feedback provided during motor training. The task contributes to highlight the potential of fMRI in improving the understanding of visual motor processes and may also be useful in detecting brain reorganisation during training.</p> |
first_indexed | 2024-12-12T12:36:39Z |
format | Article |
id | doaj.art-6d6e9af062bf4d2ba97637f7f95f756c |
institution | Directory Open Access Journal |
issn | 1743-0003 |
language | English |
last_indexed | 2024-12-12T12:36:39Z |
publishDate | 2012-07-01 |
publisher | BMC |
record_format | Article |
series | Journal of NeuroEngineering and Rehabilitation |
spelling | doaj.art-6d6e9af062bf4d2ba97637f7f95f756c2022-12-22T00:24:19ZengBMCJournal of NeuroEngineering and Rehabilitation1743-00032012-07-01914910.1186/1743-0003-9-49Brain network involved in visual processing of movement stimuli used in upper limb robotic training: an fMRI studyNocchi FedericoGazzellini SimoneGrisolia CarmelaPetrarca MaurizioCannatà VittorioCappa PaoloD’Alessio TommasoCastelli Enrico<p>Abstract</p> <p>Background</p> <p>The potential of robot-mediated therapy and virtual reality in neurorehabilitation is becoming of increasing importance. However, there is limited information, using neuroimaging, on the neural networks involved in training with these technologies. This study was intended to detect the brain network involved in the visual processing of movement during robotic training. The main aim was to investigate the existence of a common cerebral network able to assimilate biological (human upper limb) and non-biological (abstract object) movements, hence testing the suitability of the visual non-biological feedback provided by the InMotion2 Robot.</p> <p>Methods</p> <p>A visual functional Magnetic Resonance Imaging (fMRI) task was administered to 22 healthy subjects. The task required observation and retrieval of motor gestures and of the visual feedback used in robotic training. Functional activations of both biological and non-biological movements were examined to identify areas activated in both conditions, along with differential activity in upper limb vs. abstract object trials. Control of response was also tested by administering trials with congruent and incongruent reaching movements.</p> <p>Results</p> <p>The observation of upper limb and abstract object movements elicited similar patterns of activations according to a caudo-rostral pathway for the visual processing of movements (including specific areas of the occipital, temporal, parietal, and frontal lobes). Similarly, overlapping activations were found for the subsequent retrieval of the observed movement. Furthermore, activations of frontal cortical areas were associated with congruent trials more than with the incongruent ones.</p> <p>Conclusions</p> <p>This study identified the neural pathway associated with visual processing of movement stimuli used in upper limb robot-mediated training and investigated the brain’s ability to assimilate abstract object movements with human motor gestures. In both conditions, activations were elicited in cerebral areas involved in visual perception, sensory integration, recognition of movement, re-mapping on the somatosensory and motor cortex, storage in memory, and response control. Results from the congruent vs. incongruent trials revealed greater activity for the former condition than the latter in a network including cingulate cortex, right inferior and middle frontal gyrus that are involved in the go-signal and in decision control. Results on healthy subjects would suggest the appropriateness of an abstract visual feedback provided during motor training. The task contributes to highlight the potential of fMRI in improving the understanding of visual motor processes and may also be useful in detecting brain reorganisation during training.</p>http://www.jneuroengrehab.com/content/9/1/49NeurorehabilitationRobot-mediated therapyfMRIMotor processingUpper limb rehabilitation |
spellingShingle | Nocchi Federico Gazzellini Simone Grisolia Carmela Petrarca Maurizio Cannatà Vittorio Cappa Paolo D’Alessio Tommaso Castelli Enrico Brain network involved in visual processing of movement stimuli used in upper limb robotic training: an fMRI study Journal of NeuroEngineering and Rehabilitation Neurorehabilitation Robot-mediated therapy fMRI Motor processing Upper limb rehabilitation |
title | Brain network involved in visual processing of movement stimuli used in upper limb robotic training: an fMRI study |
title_full | Brain network involved in visual processing of movement stimuli used in upper limb robotic training: an fMRI study |
title_fullStr | Brain network involved in visual processing of movement stimuli used in upper limb robotic training: an fMRI study |
title_full_unstemmed | Brain network involved in visual processing of movement stimuli used in upper limb robotic training: an fMRI study |
title_short | Brain network involved in visual processing of movement stimuli used in upper limb robotic training: an fMRI study |
title_sort | brain network involved in visual processing of movement stimuli used in upper limb robotic training an fmri study |
topic | Neurorehabilitation Robot-mediated therapy fMRI Motor processing Upper limb rehabilitation |
url | http://www.jneuroengrehab.com/content/9/1/49 |
work_keys_str_mv | AT nocchifederico brainnetworkinvolvedinvisualprocessingofmovementstimuliusedinupperlimbrobotictraininganfmristudy AT gazzellinisimone brainnetworkinvolvedinvisualprocessingofmovementstimuliusedinupperlimbrobotictraininganfmristudy AT grisoliacarmela brainnetworkinvolvedinvisualprocessingofmovementstimuliusedinupperlimbrobotictraininganfmristudy AT petrarcamaurizio brainnetworkinvolvedinvisualprocessingofmovementstimuliusedinupperlimbrobotictraininganfmristudy AT cannatavittorio brainnetworkinvolvedinvisualprocessingofmovementstimuliusedinupperlimbrobotictraininganfmristudy AT cappapaolo brainnetworkinvolvedinvisualprocessingofmovementstimuliusedinupperlimbrobotictraininganfmristudy AT dalessiotommaso brainnetworkinvolvedinvisualprocessingofmovementstimuliusedinupperlimbrobotictraininganfmristudy AT castellienrico brainnetworkinvolvedinvisualprocessingofmovementstimuliusedinupperlimbrobotictraininganfmristudy |