The inverse moment for widely orthant dependent random variables

Abstract In this paper, we investigate approximations of the inverse moment model by widely orthant dependent (WOD) random variables. Let { Z n , n ≥ 1 } $\{Z_{n},n\geq1\}$ be a sequence of nonnegative WOD random variables, and { w n i , 1 ≤ i ≤ n , n ≥ 1 } $\{w_{ni},1\leq i\leq n,n\geq 1\}$ be a tr...

Full description

Bibliographic Details
Main Authors: Xiaoqin Li, Xi Liu, Wenzhi Yang, Shuhe Hu
Format: Article
Language:English
Published: SpringerOpen 2016-06-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-016-1099-8
_version_ 1811268838371622912
author Xiaoqin Li
Xi Liu
Wenzhi Yang
Shuhe Hu
author_facet Xiaoqin Li
Xi Liu
Wenzhi Yang
Shuhe Hu
author_sort Xiaoqin Li
collection DOAJ
description Abstract In this paper, we investigate approximations of the inverse moment model by widely orthant dependent (WOD) random variables. Let { Z n , n ≥ 1 } $\{Z_{n},n\geq1\}$ be a sequence of nonnegative WOD random variables, and { w n i , 1 ≤ i ≤ n , n ≥ 1 } $\{w_{ni},1\leq i\leq n,n\geq 1\}$ be a triangular array of nonnegative nonrandom weights. If the first moment is finite, then E ( a + ∑ i = 1 n w n i Z i ) − α ∼ ( a + ∑ i = 1 n w n i E Z i ) − α $E(a+ \sum_{i=1}^{n}w_{ni}Z_{i})^{-\alpha}\sim (a+\sum_{i=1}^{n}w_{ni}EZ_{i})^{-\alpha}$ for all constants a > 0 $a>0$ and α > 0 $\alpha>0$ . If the rth moment ( r > 2 $r>2$ ) is finite, then the convergence rate is presented as E ( a + ∑ i = 1 n w n i Z i ) − α ( a + ∑ i = 1 n w n i E Z i ) − α − 1 = O ( 1 ( a + ∑ i = 1 n w n i E Z i ) 1 − 2 β / r ) $\frac{E(a+\sum_{i=1}^{n}w_{ni}Z_{i})^{-\alpha}}{(a+\sum_{i=1}^{n}w_{ni}EZ_{i})^{-\alpha}}-1=O(\frac{1}{(a+\sum_{i=1}^{n}w_{ni}EZ_{i})^{1-2\beta/r}})$ , where β ≥ 0 $\beta\geq0$ and 2 β / r < 1 $2\beta/r<1$ . Finally, some simulations illustrate the results. We generalize some corresponding results.
first_indexed 2024-04-12T21:31:08Z
format Article
id doaj.art-6d7ff3886f374575a1ad91b7a9e8f96f
institution Directory Open Access Journal
issn 1029-242X
language English
last_indexed 2024-04-12T21:31:08Z
publishDate 2016-06-01
publisher SpringerOpen
record_format Article
series Journal of Inequalities and Applications
spelling doaj.art-6d7ff3886f374575a1ad91b7a9e8f96f2022-12-22T03:16:02ZengSpringerOpenJournal of Inequalities and Applications1029-242X2016-06-012016111110.1186/s13660-016-1099-8The inverse moment for widely orthant dependent random variablesXiaoqin Li0Xi Liu1Wenzhi Yang2Shuhe Hu3School of Mathematical Sciences, Anhui UniversitySchool of Mathematical Sciences, Anhui UniversitySchool of Mathematical Sciences, Anhui UniversitySchool of Mathematical Sciences, Anhui UniversityAbstract In this paper, we investigate approximations of the inverse moment model by widely orthant dependent (WOD) random variables. Let { Z n , n ≥ 1 } $\{Z_{n},n\geq1\}$ be a sequence of nonnegative WOD random variables, and { w n i , 1 ≤ i ≤ n , n ≥ 1 } $\{w_{ni},1\leq i\leq n,n\geq 1\}$ be a triangular array of nonnegative nonrandom weights. If the first moment is finite, then E ( a + ∑ i = 1 n w n i Z i ) − α ∼ ( a + ∑ i = 1 n w n i E Z i ) − α $E(a+ \sum_{i=1}^{n}w_{ni}Z_{i})^{-\alpha}\sim (a+\sum_{i=1}^{n}w_{ni}EZ_{i})^{-\alpha}$ for all constants a > 0 $a>0$ and α > 0 $\alpha>0$ . If the rth moment ( r > 2 $r>2$ ) is finite, then the convergence rate is presented as E ( a + ∑ i = 1 n w n i Z i ) − α ( a + ∑ i = 1 n w n i E Z i ) − α − 1 = O ( 1 ( a + ∑ i = 1 n w n i E Z i ) 1 − 2 β / r ) $\frac{E(a+\sum_{i=1}^{n}w_{ni}Z_{i})^{-\alpha}}{(a+\sum_{i=1}^{n}w_{ni}EZ_{i})^{-\alpha}}-1=O(\frac{1}{(a+\sum_{i=1}^{n}w_{ni}EZ_{i})^{1-2\beta/r}})$ , where β ≥ 0 $\beta\geq0$ and 2 β / r < 1 $2\beta/r<1$ . Finally, some simulations illustrate the results. We generalize some corresponding results.http://link.springer.com/article/10.1186/s13660-016-1099-8inverse moment modelWOD random variablesconvergence ratetriangular array
spellingShingle Xiaoqin Li
Xi Liu
Wenzhi Yang
Shuhe Hu
The inverse moment for widely orthant dependent random variables
Journal of Inequalities and Applications
inverse moment model
WOD random variables
convergence rate
triangular array
title The inverse moment for widely orthant dependent random variables
title_full The inverse moment for widely orthant dependent random variables
title_fullStr The inverse moment for widely orthant dependent random variables
title_full_unstemmed The inverse moment for widely orthant dependent random variables
title_short The inverse moment for widely orthant dependent random variables
title_sort inverse moment for widely orthant dependent random variables
topic inverse moment model
WOD random variables
convergence rate
triangular array
url http://link.springer.com/article/10.1186/s13660-016-1099-8
work_keys_str_mv AT xiaoqinli theinversemomentforwidelyorthantdependentrandomvariables
AT xiliu theinversemomentforwidelyorthantdependentrandomvariables
AT wenzhiyang theinversemomentforwidelyorthantdependentrandomvariables
AT shuhehu theinversemomentforwidelyorthantdependentrandomvariables
AT xiaoqinli inversemomentforwidelyorthantdependentrandomvariables
AT xiliu inversemomentforwidelyorthantdependentrandomvariables
AT wenzhiyang inversemomentforwidelyorthantdependentrandomvariables
AT shuhehu inversemomentforwidelyorthantdependentrandomvariables