Conversion of Starchy Waste Streams into Polyhydroxyalkanoates Using <i>Cupriavidus necator</i> DSM 545

Due to oil shortage and environmental problems, synthetic plastics have to be replaced by different biodegradable materials. A promising alternative could be polyhydroxyalkanoates (PHAs), and the low-cost abundant agricultural starchy by-products could be usefully converted into PHAs by properly sel...

Full description

Bibliographic Details
Main Authors: Silvia Brojanigo, Elettra Parro, Tiziano Cazzorla, Lorenzo Favaro, Marina Basaglia, Sergio Casella
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/12/7/1496
Description
Summary:Due to oil shortage and environmental problems, synthetic plastics have to be replaced by different biodegradable materials. A promising alternative could be polyhydroxyalkanoates (PHAs), and the low-cost abundant agricultural starchy by-products could be usefully converted into PHAs by properly selected and/or developed microbes. Among the widely available starchy waste streams, a variety of residues have been explored as substrates, such as broken, discolored, unripe rice and white or purple sweet potato waste. <i>Cupriavidus necator</i> DSM 545, a well-known producer of PHAs, was adopted in a simultaneous saccharification and fermentation (SSF) process through an optimized dosage of the commercial amylases cocktail STARGEN™ 002. Broken rice was found to be the most promising carbon source with PHAs levels of up to 5.18 g/L. This research demonstrates that rice and sweet potato waste are low-cost feedstocks for PHAs production, paving the way for the processing of other starchy materials into bioplastics.
ISSN:2073-4360