Facile Synthesis and Herbicidal Evaluation of 4H-3,1-Benzoxazin-4-ones and 3H-Quinazolin-4-ones with 2-Phenoxymethyl Substituents

Series of 4H-3,1-benzoxazin-4-ones and 3H-quinazolin-4-ones with phenoxy-methyl substituents were rationally designed and easily synthesized via one-pot N-acylation/ring closure reactions of anthranilic acids with 2-phenoxyacetyl chlorides to yield the 4H-3,1-benzoxazin-4-ones, and subsequently subs...

Full description

Bibliographic Details
Main Authors: Aidong Zhang, Xiaoting Huang, Haiyang Tu, Zumuretiguli Aibibuli, Yufeng Wang
Format: Article
Language:English
Published: MDPI AG 2012-03-01
Series:Molecules
Subjects:
Online Access:http://www.mdpi.com/1420-3049/17/3/3181/
Description
Summary:Series of 4H-3,1-benzoxazin-4-ones and 3H-quinazolin-4-ones with phenoxy-methyl substituents were rationally designed and easily synthesized via one-pot N-acylation/ring closure reactions of anthranilic acids with 2-phenoxyacetyl chlorides to yield the 4H-3,1-benzoxazin-4-ones, and subsequently substituted with amino derivatives to obtain the 3H-quinazolin-4-ones. The herbicidal evaluation was performed on the model plants barnyard grass (a monocotyledon) and rape (a dicotyledon), and most of the title compounds displayed high levels of phytotoxicity. The active substructure and inhibitory phenotype analysis indicated that these compounds could be attributed to the class of plant hormone inhibitors. A docking study of several representative compounds with the hormone receptor TIR1 revealed an appreciable conformational match in the active site, implicating these compounds are potential lead hits targeting this receptor.
ISSN:1420-3049