Using Fungi in Artificial Microbial Consortia to Solve Bioremediation Problems

There is currently growing interest in the creation of artificial microbial consortia, especially in the field of developing and applying various bioremediation processes. Heavy metals, dyes, synthetic polymers (microplastics), pesticides, polycyclic aromatic hydrocarbons and pharmaceutical agents a...

Full description

Bibliographic Details
Main Authors: Elena Efremenko, Nikolay Stepanov, Olga Senko, Aysel Aslanli, Olga Maslova, Ilya Lyagin
Format: Article
Language:English
Published: MDPI AG 2024-02-01
Series:Microorganisms
Subjects:
Online Access:https://www.mdpi.com/2076-2607/12/3/470
Description
Summary:There is currently growing interest in the creation of artificial microbial consortia, especially in the field of developing and applying various bioremediation processes. Heavy metals, dyes, synthetic polymers (microplastics), pesticides, polycyclic aromatic hydrocarbons and pharmaceutical agents are among the pollutants that have been mainly targeted by bioremediation based on various consortia containing fungi (mycelial types and yeasts). Such consortia can be designed both for the treatment of soil and water. This review is aimed at analyzing the recent achievements in the research of the artificial microbial consortia that are useful for environmental and bioremediation technologies, where various fungal cells are applied. The main tendencies in the formation of certain microbial combinations, and preferences in their forms for usage (suspended or immobilized), are evaluated using current publications, and the place of genetically modified cells in artificial consortia with fungi is assessed. The effect of multicomponence of the artificial consortia containing various fungal cells is estimated, as well as the influence of this factor on the functioning efficiency of the consortia and the pollutant removal efficacy. The conclusions of the review can be useful for the development of new mixed microbial biocatalysts and eco-compatible remediation processes that implement fungal cells.
ISSN:2076-2607