On the Core-Shell Nanoparticle in Fractional Dimensional Space
The investigation of core-shell nanoparticles has been greatly exciting in biomedical applications, as this remains of prime importance in targeted drug delivery, sensing, etc. In the present work, the polarizability and scattering features of nanoparticles comprised of nano-sized dielectric/metalli...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-05-01
|
Series: | Materials |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1944/13/10/2400 |
_version_ | 1797567225054363648 |
---|---|
author | A. Ali M. A. Ashraf Q. A. Minhas Q. A. Naqvi M. A. Baqir P. K. Choudhury |
author_facet | A. Ali M. A. Ashraf Q. A. Minhas Q. A. Naqvi M. A. Baqir P. K. Choudhury |
author_sort | A. Ali |
collection | DOAJ |
description | The investigation of core-shell nanoparticles has been greatly exciting in biomedical applications, as this remains of prime importance in targeted drug delivery, sensing, etc. In the present work, the polarizability and scattering features of nanoparticles comprised of nano-sized dielectric/metallic core-shell structures were investigated in the fractional dimensional (FD) space, which essentially relates to the confinement of charged particles. For this purpose, three different kinds of metals—namely aluminum, gold and silver—were considered to form the shell, having a common silicon dioxide (SiO<sub>2</sub>) nanoparticle as the core. It is noteworthy that the use of noble metal-SiO<sub>2</sub> mediums interface remains ideal to realize surface plasmon resonance. The core-shell nanoparticles were considered to have dimensions smaller than the operating wavelength. Under such conditions, the analyses of polarizability and the scattering and absorption cross-sections, and also, the extinction coefficients were taken up under Rayleigh scattering mechanism, emphasizing the effects of a varying FD parameter. Apart from these, the tuning of resonance peaks and the magnitude of surface plasmons due to FD space parameter were also analyzed. It was found that the increase of FD space parameter generally results in blue-shifts in the resonance peaks. Apart from this, the usage of gold and silver shells brings in fairly large shifts in the peak positions of wavelengths, which allows them to be more suitable for a biosensing purpose. |
first_indexed | 2024-03-10T19:38:39Z |
format | Article |
id | doaj.art-6d92642c61f04e4283d4ee443189c1e5 |
institution | Directory Open Access Journal |
issn | 1996-1944 |
language | English |
last_indexed | 2024-03-10T19:38:39Z |
publishDate | 2020-05-01 |
publisher | MDPI AG |
record_format | Article |
series | Materials |
spelling | doaj.art-6d92642c61f04e4283d4ee443189c1e52023-11-20T01:26:07ZengMDPI AGMaterials1996-19442020-05-011310240010.3390/ma13102400On the Core-Shell Nanoparticle in Fractional Dimensional SpaceA. Ali0M. A. Ashraf1Q. A. Minhas2Q. A. Naqvi3M. A. Baqir4P. K. Choudhury5Department of Electronics, Quaid-i-Azam University, Islamabad 45320, PakistanDepartment of Electronics, Quaid-i-Azam University, Islamabad 45320, PakistanDepartment of Electronics, Quaid-i-Azam University, Islamabad 45320, PakistanDepartment of Electronics, Quaid-i-Azam University, Islamabad 45320, PakistanDepartment of Electrical and Computer Engineering, Sahiwal Campus, COMSATS University Islamabad, Islamabad 57000, PakistanInstitute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor 43600, MalaysiaThe investigation of core-shell nanoparticles has been greatly exciting in biomedical applications, as this remains of prime importance in targeted drug delivery, sensing, etc. In the present work, the polarizability and scattering features of nanoparticles comprised of nano-sized dielectric/metallic core-shell structures were investigated in the fractional dimensional (FD) space, which essentially relates to the confinement of charged particles. For this purpose, three different kinds of metals—namely aluminum, gold and silver—were considered to form the shell, having a common silicon dioxide (SiO<sub>2</sub>) nanoparticle as the core. It is noteworthy that the use of noble metal-SiO<sub>2</sub> mediums interface remains ideal to realize surface plasmon resonance. The core-shell nanoparticles were considered to have dimensions smaller than the operating wavelength. Under such conditions, the analyses of polarizability and the scattering and absorption cross-sections, and also, the extinction coefficients were taken up under Rayleigh scattering mechanism, emphasizing the effects of a varying FD parameter. Apart from these, the tuning of resonance peaks and the magnitude of surface plasmons due to FD space parameter were also analyzed. It was found that the increase of FD space parameter generally results in blue-shifts in the resonance peaks. Apart from this, the usage of gold and silver shells brings in fairly large shifts in the peak positions of wavelengths, which allows them to be more suitable for a biosensing purpose.https://www.mdpi.com/1996-1944/13/10/2400core-shell nanoparticlesurface plasmonfractional dimension spacepolarizabilityscattering |
spellingShingle | A. Ali M. A. Ashraf Q. A. Minhas Q. A. Naqvi M. A. Baqir P. K. Choudhury On the Core-Shell Nanoparticle in Fractional Dimensional Space Materials core-shell nanoparticle surface plasmon fractional dimension space polarizability scattering |
title | On the Core-Shell Nanoparticle in Fractional Dimensional Space |
title_full | On the Core-Shell Nanoparticle in Fractional Dimensional Space |
title_fullStr | On the Core-Shell Nanoparticle in Fractional Dimensional Space |
title_full_unstemmed | On the Core-Shell Nanoparticle in Fractional Dimensional Space |
title_short | On the Core-Shell Nanoparticle in Fractional Dimensional Space |
title_sort | on the core shell nanoparticle in fractional dimensional space |
topic | core-shell nanoparticle surface plasmon fractional dimension space polarizability scattering |
url | https://www.mdpi.com/1996-1944/13/10/2400 |
work_keys_str_mv | AT aali onthecoreshellnanoparticleinfractionaldimensionalspace AT maashraf onthecoreshellnanoparticleinfractionaldimensionalspace AT qaminhas onthecoreshellnanoparticleinfractionaldimensionalspace AT qanaqvi onthecoreshellnanoparticleinfractionaldimensionalspace AT mabaqir onthecoreshellnanoparticleinfractionaldimensionalspace AT pkchoudhury onthecoreshellnanoparticleinfractionaldimensionalspace |