A Physical Measure for Characterizing Crossover from Integrable to Chaotic Quantum Systems

In this paper, a quantity that describes a response of a system’s eigenstates to a very small perturbation of physical relevance is studied as a measure for characterizing crossover from integrable to chaotic quantum systems. It is computed from the distribution of very small, rescaled components of...

Full description

Bibliographic Details
Main Authors: Chenguang Y. Lyu, Wen-Ge Wang
Format: Article
Language:English
Published: MDPI AG 2023-02-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/25/2/366
Description
Summary:In this paper, a quantity that describes a response of a system’s eigenstates to a very small perturbation of physical relevance is studied as a measure for characterizing crossover from integrable to chaotic quantum systems. It is computed from the distribution of very small, rescaled components of perturbed eigenfunctions on the unperturbed basis. Physically, it gives a relative measure to prohibition of level transitions induced by the perturbation. Making use of this measure, numerical simulations in the so-called Lipkin-Meshkov-Glick model show in a clear way that the whole integrability-chaos transition region is divided into three subregions: a nearly integrable regime, a nearly chaotic regime, and a crossover regime.
ISSN:1099-4300