Numerical Simulation of Adaptive Radial Basis NN-Based Non-Singular Fast Terminal Sliding Mode Control with Time Delay Estimator for Precise Control of Dual-Axis Manipulator

Robotic manipulators can reduce the cost of production and improve productivity; however, controlling a manipulator to follow a desired trajectory is a thorny problem. In this study, we introduced various forms of interference to facilitate the modeling of a dual-axis manipulator. The interference a...

Full description

Bibliographic Details
Main Authors: Jim-Wei Wu, Wen-Shan Cen, Cheng-Chang Ho
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/12/19/9605
Description
Summary:Robotic manipulators can reduce the cost of production and improve productivity; however, controlling a manipulator to follow a desired trajectory is a thorny problem. In this study, we introduced various forms of interference to facilitate the modeling of a dual-axis manipulator. The interference associated with the payload is handled by an adaptive radial basis neural network (ARBNN) controller, while other interference is estimated by a time delay estimator (TDE). The control signal is output by a non-singular fast terminal sliding mode controller (NFTSMC) to minimize further interference. Since the proposed controller can deal with the payload, system uncertainties, external disturbances, friction, and backlash, compared with conventional control methods, it has better tracking accuracy and stability.
ISSN:2076-3417