Biological and Molecular Docking Evaluation of a Benzylisothiocyanate Semisynthetic Derivative From Moringa oleifera in a Pre-clinical Study of Temporomandibular Joint Pain

ObjectiveMoringa oleifera possesses multiple biological effects and the 4-[(4′-O-acetyl-α-L- rhamnosyloxy) benzyl] isothiocyanate accounts for them. Based on the original isothiocyanate molecule we obtained a semisynthetic derivative, named 4-[(2′,3′,4′-O-triacetyl-α-L-rhamnosyloxy) N-benzyl] hydraz...

Full description

Bibliographic Details
Main Authors: Felipe Dantas Silveira, Francisco Isaac Fernandes Gomes, Danielle Rocha do Val, Hermany Capistrano Freitas, Ellen Lima de Assis, Diana Kelly Castro de Almeida, Helyson Lucas Bezerra Braz, Francisco Geraldo Barbosa, Jair Mafezoli, Marcos Reinaldo da Silva, Roberta Jeane Bezerra Jorge, Juliana Trindade Clemente-Napimoga, Deiziane Viana da Silva Costa, Gerly Anne de Castro Brito, Vicente de Paulo Teixeira Pinto, Gerardo Cristino-Filho, Mirna Marques Bezerra, Hellíada Vasconcelos Chaves
Format: Article
Language:English
Published: Frontiers Media S.A. 2022-04-01
Series:Frontiers in Neuroscience
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fnins.2022.742239/full
Description
Summary:ObjectiveMoringa oleifera possesses multiple biological effects and the 4-[(4′-O-acetyl-α-L- rhamnosyloxy) benzyl] isothiocyanate accounts for them. Based on the original isothiocyanate molecule we obtained a semisynthetic derivative, named 4-[(2′,3′,4′-O-triacetyl-α-L-rhamnosyloxy) N-benzyl] hydrazine carbothioamide (MC-H) which was safe and effective in a temporomandibular joint (TMJ) inflammatory hypernociception in rats. Therefore, considering that there is still a gap in the knowledge concerning the mechanisms of action through which the MC-H effects are mediated, this study aimed to investigate the involvement of the adhesion molecules (ICAM-1, CD55), the pathways heme oxygenase-1 (HO-1) and NO/cGMP/PKG/K+ATP, and the central opioid receptors in the efficacy of the MC-H in a pre-clinical study of TMJ pain.MethodsMolecular docking studies were performed to test the binding performance of MC-H against the ten targets of interest (ICAM-1, CD55, HO-1, iNOS, soluble cGMP, cGMP-dependent protein kinase (PKG), K+ATP channel, mu (μ), kappa (κ), and delta (δ) opioid receptors). In in vivo studies, male Wistar rats were treated with MC-H 1 μg/kg before TMJ formalin injection and nociception was evaluated. Periarticular tissues were removed to assess ICAM-1 and CD55 protein levels by Western blotting. To investigate the role of HO-1 and NO/cGMP/PKG/K+ATP pathways, the inhibitors ZnPP-IX, aminoguanidine, ODQ, KT5823, or glibenclamide were used. To study the involvement of opioid receptors, rats were pre-treated (15 min) with an intrathecal injection of non-selective inhibitor naloxone or with CTOP, naltrindole, or norbinaltorphimine.ResultsAll interactions presented acceptable binding energy values (below −6.0 kcal/mol) which suggest MC-H might strongly bind to its molecular targets. MC-H reduced the protein levels of ICAM-1 and CD55 in periarticular tissues. ZnPP-IX, naloxone, CTOP, and naltrindole reversed the antinociceptive effect of MC-H.ConclusionMC-H demonstrated antinociceptive and anti-inflammatory effects peripherally by the activation of the HO-1 pathway, as well as through inhibition of the protein levels of adhesion molecules, and centrally by μ and δ opioid receptors.
ISSN:1662-453X