Comparison between conventional and deep learning-based surrogate models in predicting convective heat transfer performance of U-bend channels

Deep neural networks are efficient methods to achieve real-time visualization of physics fields. The main concerns that prevented deep learning from being implemented in the field of energy conversion were the risks of overfitting and the lack of data. Therefore, it is necessary to evaluate differen...

Szczegółowa specyfikacja

Opis bibliograficzny
Główni autorzy: Qi Wang, Weiwei Zhou, Li Yang, Kang Huang
Format: Artykuł
Język:English
Wydane: Elsevier 2022-05-01
Seria:Energy and AI
Hasła przedmiotowe:
Dostęp online:http://www.sciencedirect.com/science/article/pii/S2666546822000040