Two Flavors of Hydrogen Atoms: A Possible Explanation of Dark Matter

In one of our previous papers, it was shown that for the ground state of hydrogenic atoms/ions, it is possible to match the interior (inside the nucleus) solution of the Dirac equation with the singular exterior solution of the Dirac equation, so that the singular solution should not be rejected for...

Full description

Bibliographic Details
Main Author: Eugene Oks
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:Atoms
Subjects:
Online Access:https://www.mdpi.com/2218-2004/8/3/33
Description
Summary:In one of our previous papers, it was shown that for the ground state of hydrogenic atoms/ions, it is possible to match the interior (inside the nucleus) solution of the Dirac equation with the singular exterior solution of the Dirac equation, so that the singular solution should not be rejected for the ground state of hydrogenic atoms/ions. In that paper, there was presented also the first experimental proof of the existence of this Alternative Kind of Hydrogen Atoms (AKHA)—by showing that the presence of the AKHA solves a long-standing mystery of the huge discrepancy between the experimental and previous theoretical results concerning the high-energy tail of the linear momentum distribution in the ground state of hydrogen atoms. In another paper, we showed that for hydrogen atoms, the singular solution of the Dirac equation outside the proton is legitimate not just for the ground state 1<sup>2</sup>S<sub>1/2</sub>, but also for the states 2<sup>2</sup>S<sub>1/2</sub>, 3<sup>2</sup>S<sub>1/2</sub> and so on: it is legitimate for all the discrete states n<sup>2</sup>S<sub>1/2</sub>. Moreover, the singular exterior solution is legitimate also for the l = 0 states of the continuous spectrum. In that paper, we demonstrated that the AKHA can be the basis for explaining the recent puzzling astrophysical observational results concerning the redshifted radio line 21 cm from the early Universe. Thus, there seems to be the astrophysical evidence of the existence of the AKHA—in addition to the already available observational proof of their existence from atomic experiments. In the present paper, we point out that the AKHA provide an alternative view on dark matter—without resorting to new subatomic particles or dramatically changing the existing physical laws. This is because due to the selection rules, the AKHA do not have state that can be coupled by the electric dipole radiation. We also reformulate the above theoretical results in terms that hydrogen atoms can have two flavors: one flavor corresponding to the regular solution outside the proton, another—to the singular solution outside the proton, both solutions corresponding to the same energy. Since this means the additional degeneracy, then according to the fundamental theorem of quantum mechanics, there should be an additional conserved quantity, which we call isohydrogen spin (isohyspin). Further atomic experiments for accurately measuring the high-energy tail of the linear momentum distribution in the ground state of hydrogen atoms, as well as further observational studies of the redshifted 21 cm radio line from the early Universe, could provide a further proof that dark matter or a part of it is the AKHA.
ISSN:2218-2004