Characterizing the ZrC(111)/<i>c</i>-ZrO<sub>2</sub>(111) Hetero-Ceramic Interface: First Principles DFT and Atomistic Thermodynamic Modeling

The mechanical and physical properties of zirconium carbide (ZrC) are limited to its ability to deteriorate in oxidizing environments. Low refractory oxides are typically formed as layers on ZrC surfaces when exposed to the slightest concentrations of oxygen. However, this carbide has a wide range o...

Full description

Bibliographic Details
Main Authors: Eric Osei-Agyemang, Jean-François Paul, Romain Lucas, Sylvie Foucaud, Sylvain Cristol, Anne-Sophie Mamede, Nicolas Nuns, Ahmed Addad
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/27/9/2954
_version_ 1797503645620633600
author Eric Osei-Agyemang
Jean-François Paul
Romain Lucas
Sylvie Foucaud
Sylvain Cristol
Anne-Sophie Mamede
Nicolas Nuns
Ahmed Addad
author_facet Eric Osei-Agyemang
Jean-François Paul
Romain Lucas
Sylvie Foucaud
Sylvain Cristol
Anne-Sophie Mamede
Nicolas Nuns
Ahmed Addad
author_sort Eric Osei-Agyemang
collection DOAJ
description The mechanical and physical properties of zirconium carbide (ZrC) are limited to its ability to deteriorate in oxidizing environments. Low refractory oxides are typically formed as layers on ZrC surfaces when exposed to the slightest concentrations of oxygen. However, this carbide has a wide range of applications in nuclear reactor lines and nozzle flaps in the aerospace industry, just to name a few. To develop mechanically strong and oxygen-resistant ZrC materials, the need for studying and characterizing the oxidized layers, with emphasis on the interfacial structure between ZrC and the oxidized phases, cannot be understated. In this paper, the ZrC(111)//<i>c</i>-ZrO<sub>2</sub> (111) interface was studied by both finite temperature molecular dynamic simulation and DFT. The interfacial mechanical properties were characterized by the work of adhesion which revealed a Zr|OO|Zr|OO//ZrC(111) interface model as the most stable with an oxygen layer from ZrO<sub>2</sub> being deposited on the ZrC(111) surface. Further structural analysis at the interface showed a crack in the first ZrO<sub>2</sub> layer at the interfacial region. Investigations of the electronic structure using the density of state calculations and Bader charge analysis revealed the interfacial properties as local effects with no significant impacts in the bulk regions of the interface slab.
first_indexed 2024-03-10T03:53:40Z
format Article
id doaj.art-6db7919faf324d41b9170fc1c1e353a8
institution Directory Open Access Journal
issn 1420-3049
language English
last_indexed 2024-03-10T03:53:40Z
publishDate 2022-05-01
publisher MDPI AG
record_format Article
series Molecules
spelling doaj.art-6db7919faf324d41b9170fc1c1e353a82023-11-23T08:52:03ZengMDPI AGMolecules1420-30492022-05-01279295410.3390/molecules27092954Characterizing the ZrC(111)/<i>c</i>-ZrO<sub>2</sub>(111) Hetero-Ceramic Interface: First Principles DFT and Atomistic Thermodynamic ModelingEric Osei-Agyemang0Jean-François Paul1Romain Lucas2Sylvie Foucaud3Sylvain Cristol4Anne-Sophie Mamede5Nicolas Nuns6Ahmed Addad7Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY 14260-1660, USAUMR 8181—UCCS—Unité de Catalyse et Chimie du Solide, CNRS, Centrale Lille, Univ. Artois, Université de Lille 1, F-59000 Lille, FranceIRCER, UMR 7315, Université de Limoges, F-87068 Limoges, FranceIRCER, UMR 7315, Université de Limoges, F-87068 Limoges, FranceUMR 8181—UCCS—Unité de Catalyse et Chimie du Solide, CNRS, Centrale Lille, Univ. Artois, Université de Lille 1, F-59000 Lille, FranceUMR 8181—UCCS—Unité de Catalyse et Chimie du Solide, CNRS, Centrale Lille, Univ. Artois, Université de Lille 1, F-59000 Lille, FranceUMR 8181—UCCS—Unité de Catalyse et Chimie du Solide, CNRS, Centrale Lille, Univ. Artois, Université de Lille 1, F-59000 Lille, FranceCNRS-UMR 8207, UMÉT, Unité MatÉriaux et Transformations, F-59000 Lille, FranceThe mechanical and physical properties of zirconium carbide (ZrC) are limited to its ability to deteriorate in oxidizing environments. Low refractory oxides are typically formed as layers on ZrC surfaces when exposed to the slightest concentrations of oxygen. However, this carbide has a wide range of applications in nuclear reactor lines and nozzle flaps in the aerospace industry, just to name a few. To develop mechanically strong and oxygen-resistant ZrC materials, the need for studying and characterizing the oxidized layers, with emphasis on the interfacial structure between ZrC and the oxidized phases, cannot be understated. In this paper, the ZrC(111)//<i>c</i>-ZrO<sub>2</sub> (111) interface was studied by both finite temperature molecular dynamic simulation and DFT. The interfacial mechanical properties were characterized by the work of adhesion which revealed a Zr|OO|Zr|OO//ZrC(111) interface model as the most stable with an oxygen layer from ZrO<sub>2</sub> being deposited on the ZrC(111) surface. Further structural analysis at the interface showed a crack in the first ZrO<sub>2</sub> layer at the interfacial region. Investigations of the electronic structure using the density of state calculations and Bader charge analysis revealed the interfacial properties as local effects with no significant impacts in the bulk regions of the interface slab.https://www.mdpi.com/1420-3049/27/9/2954ZrCDFTthermodynamic
spellingShingle Eric Osei-Agyemang
Jean-François Paul
Romain Lucas
Sylvie Foucaud
Sylvain Cristol
Anne-Sophie Mamede
Nicolas Nuns
Ahmed Addad
Characterizing the ZrC(111)/<i>c</i>-ZrO<sub>2</sub>(111) Hetero-Ceramic Interface: First Principles DFT and Atomistic Thermodynamic Modeling
Molecules
ZrC
DFT
thermodynamic
title Characterizing the ZrC(111)/<i>c</i>-ZrO<sub>2</sub>(111) Hetero-Ceramic Interface: First Principles DFT and Atomistic Thermodynamic Modeling
title_full Characterizing the ZrC(111)/<i>c</i>-ZrO<sub>2</sub>(111) Hetero-Ceramic Interface: First Principles DFT and Atomistic Thermodynamic Modeling
title_fullStr Characterizing the ZrC(111)/<i>c</i>-ZrO<sub>2</sub>(111) Hetero-Ceramic Interface: First Principles DFT and Atomistic Thermodynamic Modeling
title_full_unstemmed Characterizing the ZrC(111)/<i>c</i>-ZrO<sub>2</sub>(111) Hetero-Ceramic Interface: First Principles DFT and Atomistic Thermodynamic Modeling
title_short Characterizing the ZrC(111)/<i>c</i>-ZrO<sub>2</sub>(111) Hetero-Ceramic Interface: First Principles DFT and Atomistic Thermodynamic Modeling
title_sort characterizing the zrc 111 i c i zro sub 2 sub 111 hetero ceramic interface first principles dft and atomistic thermodynamic modeling
topic ZrC
DFT
thermodynamic
url https://www.mdpi.com/1420-3049/27/9/2954
work_keys_str_mv AT ericoseiagyemang characterizingthezrc111icizrosub2sub111heteroceramicinterfacefirstprinciplesdftandatomisticthermodynamicmodeling
AT jeanfrancoispaul characterizingthezrc111icizrosub2sub111heteroceramicinterfacefirstprinciplesdftandatomisticthermodynamicmodeling
AT romainlucas characterizingthezrc111icizrosub2sub111heteroceramicinterfacefirstprinciplesdftandatomisticthermodynamicmodeling
AT sylviefoucaud characterizingthezrc111icizrosub2sub111heteroceramicinterfacefirstprinciplesdftandatomisticthermodynamicmodeling
AT sylvaincristol characterizingthezrc111icizrosub2sub111heteroceramicinterfacefirstprinciplesdftandatomisticthermodynamicmodeling
AT annesophiemamede characterizingthezrc111icizrosub2sub111heteroceramicinterfacefirstprinciplesdftandatomisticthermodynamicmodeling
AT nicolasnuns characterizingthezrc111icizrosub2sub111heteroceramicinterfacefirstprinciplesdftandatomisticthermodynamicmodeling
AT ahmedaddad characterizingthezrc111icizrosub2sub111heteroceramicinterfacefirstprinciplesdftandatomisticthermodynamicmodeling